Abstract:Semi-supervised semantic segmentation relieves the reliance on large-scale labeled data by leveraging unlabeled data. Recent semi-supervised semantic segmentation approaches mainly resort to pseudo-labeling methods to exploit unlabeled data. However, unreliable pseudo-labeling can undermine the semi-supervision processes. In this paper, we propose an algorithm called Multi-Level Label Correction (MLLC), which aims to use graph neural networks to capture structural relationships in Semantic-Level Graphs (SLGs) and Class-Level Graphs (CLGs) to rectify erroneous pseudo-labels. Specifically, SLGs represent semantic affinities between pairs of pixel features, and CLGs describe classification consistencies between pairs of pixel labels. With the support of proximate pattern information from graphs, MLLC can rectify incorrectly predicted pseudo-labels and can facilitate discriminative feature representations. We design an end-to-end network to train and perform this effective label corrections mechanism. Experiments demonstrate that MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets. Specifically, MLLC improves the supervised baseline by at least 5% and 2% with DeepLabV2 and DeepLabV3+ respectively under different partition protocols.
Abstract:Computerized Adaptive Testing (CAT) provides an efficient and tailored method for assessing the proficiency of examinees, by dynamically adjusting test questions based on their performance. Widely adopted across diverse fields like education, healthcare, sports, and sociology, CAT has revolutionized testing practices. While traditional methods rely on psychometrics and statistics, the increasing complexity of large-scale testing has spurred the integration of machine learning techniques. This paper aims to provide a machine learning-focused survey on CAT, presenting a fresh perspective on this adaptive testing method. By examining the test question selection algorithm at the heart of CAT's adaptivity, we shed light on its functionality. Furthermore, we delve into cognitive diagnosis models, question bank construction, and test control within CAT, exploring how machine learning can optimize these components. Through an analysis of current methods, strengths, limitations, and challenges, we strive to develop robust, fair, and efficient CAT systems. By bridging psychometric-driven CAT research with machine learning, this survey advocates for a more inclusive and interdisciplinary approach to the future of adaptive testing.