Abstract:The rapid development of online recruitment platforms has created unprecedented opportunities for job seekers while concurrently posing the significant challenge of quickly and accurately pinpointing positions that align with their skills and preferences. Job recommendation systems have significantly alleviated the extensive search burden for job seekers by optimizing user engagement metrics, such as clicks and applications, thus achieving notable success. In recent years, a substantial amount of research has been devoted to developing effective job recommendation models, primarily focusing on text-matching based and behavior modeling based methods. While these approaches have realized impressive outcomes, it is imperative to note that research on the explainability of recruitment recommendations remains profoundly unexplored. To this end, in this paper, we propose DISCO, a hierarchical Disentanglement based Cognitive diagnosis framework, aimed at flexibly accommodating the underlying representation learning model for effective and interpretable job recommendations. Specifically, we first design a hierarchical representation disentangling module to explicitly mine the hierarchical skill-related factors implied in hidden representations of job seekers and jobs. Subsequently, we propose level-aware association modeling to enhance information communication and robust representation learning both inter- and intra-level, which consists of the interlevel knowledge influence module and the level-wise contrastive learning. Finally, we devise an interaction diagnosis module incorporating a neural diagnosis function for effectively modeling the multi-level recruitment interaction process between job seekers and jobs, which introduces the cognitive measurement theory.
Abstract:Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.
Abstract:In the realm of education, both independent learning and group learning are esteemed as the most classic paradigms. The former allows learners to self-direct their studies, while the latter is typically characterized by teacher-directed scenarios. Recent studies in the field of intelligent education have leveraged deep temporal models to trace the learning process, capturing the dynamics of students' knowledge states, and have achieved remarkable performance. However, existing approaches have primarily focused on modeling the independent learning process, with the group learning paradigm receiving less attention. Moreover, the reciprocal effect between the two learning processes, especially their combined potential to foster holistic student development, remains inadequately explored. To this end, in this paper, we propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels, drawing from the Independent and Group Learning processes. Specifically, we first introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions across various time frames. Subsequently, we employ reciprocal enhanced learning modeling to fully exploit the comprehensive and complementary information between the two behaviors. Furthermore, we design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism. It is used to delve into the dynamic influence of individual and group interactions throughout the learning processes. Conclusively, we introduce a bias-aware contrastive learning module to bolster the stability of the model's training. Extensive experiments on four real-world educational datasets clearly demonstrate the effectiveness of the proposed RIGL model.
Abstract:In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023, this dataset encompasses monthly recruitment demand for 2,324 types of skills across 521 companies. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research. Our code and dataset are publicly accessible via the https://github.com/Job-SDF/benchmark.
Abstract:Pre-trained diffusion models have demonstrated remarkable proficiency in synthesizing images across a wide range of scenarios with customizable prompts, indicating their effective capacity to capture universal features. Motivated by this, our study delves into the utilization of the implicit knowledge embedded within diffusion models to address challenges in cross-domain semantic segmentation. This paper investigates the approach that leverages the sampling and fusion techniques to harness the features of diffusion models efficiently. Contrary to the simplistic migration applications characterized by prior research, our finding reveals that the multi-step diffusion process inherent in the diffusion model manifests more robust semantic features. We propose DIffusion Feature Fusion (DIFF) as a backbone use for extracting and integrating effective semantic representations through the diffusion process. By leveraging the strength of text-to-image generation capability, we introduce a new training framework designed to implicitly learn posterior knowledge from it. Through rigorous evaluation in the contexts of domain generalization semantic segmentation, we establish that our methodology surpasses preceding approaches in mitigating discrepancies across distinct domains and attains the state-of-the-art (SOTA) benchmark. Within the synthetic-to-real (syn-to-real) context, our method significantly outperforms ResNet-based and transformer-based backbone methods, achieving an average improvement of $3.84\%$ mIoU across various datasets. The implementation code will be released soon.
Abstract:In the contemporary era of widespread online recruitment, resume understanding has been widely acknowledged as a fundamental and crucial task, which aims to extract structured information from resume documents automatically. Compared to the traditional rule-based approaches, the utilization of recently proposed pre-trained document understanding models can greatly enhance the effectiveness of resume understanding. The present approaches have, however, disregarded the hierarchical relations within the structured information presented in resumes, and have difficulty parsing resumes in an efficient manner. To this end, in this paper, we propose a novel model, namely ERU, to achieve efficient resume understanding. Specifically, we first introduce a layout-aware multi-modal fusion transformer for encoding the segments in the resume with integrated textual, visual, and layout information. Then, we design three self-supervised tasks to pre-train this module via a large number of unlabeled resumes. Next, we fine-tune the model with a multi-granularity sequence labeling task to extract structured information from resumes. Finally, extensive experiments on a real-world dataset clearly demonstrate the effectiveness of ERU.
Abstract:Efficient knowledge management plays a pivotal role in augmenting both the operational efficiency and the innovative capacity of businesses and organizations. By indexing knowledge through vectorization, a variety of knowledge retrieval methods have emerged, significantly enhancing the efficacy of knowledge management systems. Recently, the rapid advancements in generative natural language processing technologies paved the way for generating precise and coherent answers after retrieving relevant documents tailored to user queries. However, for enterprise knowledge bases, assembling extensive training data from scratch for knowledge retrieval and generation is a formidable challenge due to the privacy and security policies of private data, frequently entailing substantial costs. To address the challenge above, in this paper, we propose EKRG, a novel Retrieval-Generation framework based on large language models (LLMs), expertly designed to enable question-answering for Enterprise Knowledge bases with limited annotation costs. Specifically, for the retrieval process, we first introduce an instruction-tuning method using an LLM to generate sufficient document-question pairs for training a knowledge retriever. This method, through carefully designed instructions, efficiently generates diverse questions for enterprise knowledge bases, encompassing both fact-oriented and solution-oriented knowledge. Additionally, we develop a relevance-aware teacher-student learning strategy to further enhance the efficiency of the training process. For the generation process, we propose a novel chain of thought (CoT) based fine-tuning method to empower the LLM-based generator to adeptly respond to user questions using retrieved documents. Finally, extensive experiments on real-world datasets have demonstrated the effectiveness of our proposed framework.
Abstract:Collaborative filtering methods based on graph neural networks (GNNs) have witnessed significant success in recommender systems (RS), capitalizing on their ability to capture collaborative signals within intricate user-item relationships via message-passing mechanisms. However, these GNN-based RS inadvertently introduce excess linear correlation between user and item embeddings, contradicting the goal of providing personalized recommendations. While existing research predominantly ascribes this flaw to the over-smoothing problem, this paper underscores the critical, often overlooked role of the over-correlation issue in diminishing the effectiveness of GNN representations and subsequent recommendation performance. Up to now, the over-correlation issue remains unexplored in RS. Meanwhile, how to mitigate the impact of over-correlation while preserving collaborative filtering signals is a significant challenge. To this end, this paper aims to address the aforementioned gap by undertaking a comprehensive study of the over-correlation issue in graph collaborative filtering models. Firstly, we present empirical evidence to demonstrate the widespread prevalence of over-correlation in these models. Subsequently, we dive into a theoretical analysis which establishes a pivotal connection between the over-correlation and over-smoothing issues. Leveraging these insights, we introduce the Adaptive Feature De-correlation Graph Collaborative Filtering (AFDGCF) framework, which dynamically applies correlation penalties to the feature dimensions of the representation matrix, effectively alleviating both over-correlation and over-smoothing issues. The efficacy of the proposed framework is corroborated through extensive experiments conducted with four representative graph collaborative filtering models across four publicly available datasets.
Abstract:In today's competitive and fast-evolving business environment, it is a critical time for organizations to rethink how to make talent-related decisions in a quantitative manner. Indeed, the recent development of Big Data and Artificial Intelligence (AI) techniques have revolutionized human resource management. The availability of large-scale talent and management-related data provides unparalleled opportunities for business leaders to comprehend organizational behaviors and gain tangible knowledge from a data science perspective, which in turn delivers intelligence for real-time decision-making and effective talent management at work for their organizations. In the last decade, talent analytics has emerged as a promising field in applied data science for human resource management, garnering significant attention from AI communities and inspiring numerous research efforts. To this end, we present an up-to-date and comprehensive survey on AI technologies used for talent analytics in the field of human resource management. Specifically, we first provide the background knowledge of talent analytics and categorize various pertinent data. Subsequently, we offer a comprehensive taxonomy of relevant research efforts, categorized based on three distinct application-driven scenarios: talent management, organization management, and labor market analysis. In conclusion, we summarize the open challenges and potential prospects for future research directions in the domain of AI-driven talent analytics.
Abstract:Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration. We have also created a GitHub repository to index relevant papers on LLMs for recommendation, https://github.com/WLiK/LLM4Rec.