Macquarie University
Abstract:Diffusion Models (DMs) achieve state-of-the-art synthesis results in image generation and have been applied to various fields. However, DMs sometimes seriously violate user privacy during usage, making the protection of privacy an urgent issue. Using traditional privacy computing schemes like Secure Multi-Party Computation (MPC) directly in DMs faces significant computation and communication challenges. To address these issues, we propose CipherDM, the first novel, versatile and universal framework applying MPC technology to DMs for secure sampling, which can be widely implemented on multiple DM based tasks. We thoroughly analyze sampling latency breakdown, find time-consuming parts and design corresponding secure MPC protocols for computing nonlinear activations including SoftMax, SiLU and Mish. CipherDM is evaluated on popular architectures (DDPM, DDIM) using MNIST dataset and on SD deployed by diffusers. Compared to direct implementation on SPU, our approach improves running time by approximately 1.084\times \sim 2.328\times, and reduces communication costs by approximately 1.212\times \sim 1.791\times.
Abstract:Subgraph federated learning (SFL) is a research methodology that has gained significant attention for its potential to handle distributed graph-structured data. In SFL, the local model comprises graph neural networks (GNNs) with a partial graph structure. However, some SFL models have overlooked the significance of missing cross-subgraph edges, which can lead to local GNNs being unable to message-pass global representations to other parties' GNNs. Moreover, existing SFL models require substantial labeled data, which limits their practical applications. To overcome these limitations, we present a novel SFL framework called FedMpa that aims to learn cross-subgraph node representations. FedMpa first trains a multilayer perceptron (MLP) model using a small amount of data and then propagates the federated feature to the local structures. To further improve the embedding representation of nodes with local subgraphs, we introduce the FedMpae method, which reconstructs the local graph structure with an innovation view that applies pooling operation to form super-nodes. Our extensive experiments on six graph datasets demonstrate that FedMpa is highly effective in node classification. Furthermore, our ablation experiments verify the effectiveness of FedMpa.
Abstract:Federated learning (FL), which aims to facilitate data collaboration across multiple organizations without exposing data privacy, encounters potential security risks. One serious threat is backdoor attacks, where an attacker injects a specific trigger into the training dataset to manipulate the model's prediction. Most existing FL backdoor attacks are based on horizontal federated learning (HFL), where the data owned by different parties have the same features. However, compared to HFL, backdoor attacks on vertical federated learning (VFL), where each party only holds a disjoint subset of features and the labels are only owned by one party, are rarely studied. The main challenge of this attack is to allow an attacker without access to the data labels, to perform an effective attack. To this end, we propose BadVFL, a novel and practical approach to inject backdoor triggers into victim models without label information. BadVFL mainly consists of two key steps. First, to address the challenge of attackers having no knowledge of labels, we introduce a SDD module that can trace data categories based on gradients. Second, we propose a SDP module that can improve the attack's effectiveness by enhancing the decision dependency between the trigger and attack target. Extensive experiments show that BadVFL supports diverse datasets and models, and achieves over 93% attack success rate with only 1% poisoning rate.
Abstract:Clustering evaluation measures are frequently used to evaluate the performance of algorithms. However, most measures are not properly normalized and ignore some information in the inherent structure of clusterings. We model the relation between two clusterings as a bipartite graph and propose a general component-based decomposition formula based on the components of the graph. Most existing measures are examples of this formula. In order to satisfy consistency in the component, we further propose a split-merge framework for comparing clusterings of different data sets. Our framework gives measures that are conditionally normalized, and it can make use of data point information, such as feature vectors and pairwise distances. We use an entropy-based instance of the framework and a coreference resolution data set to demonstrate empirically the utility of our framework over other measures.
Abstract:In the process of training Support Vector Machines (SVMs) by decomposition methods, working set selection is an important technique, and some exciting schemes were employed into this field. To improve working set selection, we propose a new model for working set selection in sequential minimal optimization (SMO) decomposition methods. In this model, it selects B as working set without reselection. Some properties are given by simple proof, and experiments demonstrate that the proposed method is in general faster than existing methods.