Abstract:This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL) that addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks. HPO leverages maximum entropy reinforcement learning combined with token-level Direct Preference Optimization (DPO), eliminating the need for pre-trained reference policies that are typically unavailable in challenging robotic scenarios. Mathematically, we formulate HRL as a bi-level optimization problem and transform it into a primitive-regularized DPO formulation, ensuring feasible subgoal generation and avoiding degenerate solutions. Extensive experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines. Furthermore, ablation studies validate our design choices, and quantitative analyses confirm the ability of HPO to mitigate non-stationarity and infeasible subgoal generation issues in HRL.
Abstract:Embodied Question Answering (EQA) is an essential yet challenging task for robotic home assistants. Recent studies have shown that large vision-language models (VLMs) can be effectively utilized for EQA, but existing works either focus on video-based question answering without embodied exploration or rely on closed-form choice sets. In real-world scenarios, a robotic agent must efficiently explore and accurately answer questions in open-vocabulary settings. To address these challenges, we propose a novel framework called EfficientEQA for open-vocabulary EQA, which enables efficient exploration and accurate answering. In EfficientEQA, the robot actively explores unknown environments using Semantic-Value-Weighted Frontier Exploration, a strategy that prioritizes exploration based on semantic importance provided by calibrated confidence from black-box VLMs to quickly gather relevant information. To generate accurate answers, we employ Retrieval-Augmented Generation (RAG), which utilizes BLIP to retrieve useful images from accumulated observations and VLM reasoning to produce responses without relying on predefined answer choices. Additionally, we detect observations that are highly relevant to the question as outliers, allowing the robot to determine when it has sufficient information to stop exploring and provide an answer. Experimental results demonstrate the effectiveness of our approach, showing an improvement in answering accuracy by over 15% and efficiency, measured in running steps, by over 20% compared to state-of-the-art methods.
Abstract:The importance of Reinforcement Learning from Human Feedback (RLHF) in aligning large language models (LLMs) with human values cannot be overstated. RLHF is a three-stage process that includes supervised fine-tuning (SFT), reward learning, and policy learning. Although there are several offline and online approaches to aligning LLMs, they often suffer from distribution shift issues. These issues arise from the inability to accurately capture the distributional interdependence between the reward learning and policy learning stages. Consequently, this has led to various approximated approaches, but the theoretical insights and motivations remain largely limited to tabular settings, which do not hold in practice. This gap between theoretical insights and practical implementations is critical. It is challenging to address this gap as it requires analyzing the performance of AI alignment algorithms in neural network-parameterized settings. Although bi-level formulations have shown promise in addressing distribution shift issues, they suffer from the hyper-gradient problem, and current approaches lack efficient algorithms to solve this. In this work, we tackle these challenges employing the bi-level formulation laid out in Kwon et al. (2024) along with the assumption \emph{Weak Gradient Domination} to demonstrate convergence in an RLHF setup, obtaining a sample complexity of $\epsilon^{-\frac{7}{2}}$ . Our key contributions are twofold: (i) We propose a bi-level formulation for AI alignment in parameterized settings and introduce a first-order approach to solve this problem. (ii) We analyze the theoretical convergence rates of the proposed algorithm and derive state-of-the-art bounds. To the best of our knowledge, this is the first work to establish convergence rate bounds and global optimality for the RLHF framework in neural network-parameterized settings.
Abstract:Reinforcement learning with general utilities has recently gained attention thanks to its ability to unify several problems, including imitation learning, pure exploration, and safe RL. However, prior work for solving this general problem in a unified way has mainly focused on the tabular setting. This is restrictive when considering larger state-action spaces because of the need to estimate occupancy measures during policy optimization. In this work, we address this issue and propose to approximate occupancy measures within a function approximation class using maximum likelihood estimation (MLE). We propose a simple policy gradient algorithm (PG-OMA) where an actor updates the policy parameters to maximize the general utility objective whereas a critic approximates the occupancy measure using MLE. We provide a sample complexity analysis of PG-OMA showing that our occupancy measure estimation error only scales with the dimension of our function approximation class rather than the size of the state action space. Under suitable assumptions, we establish first order stationarity and global optimality performance bounds for the proposed PG-OMA algorithm for nonconcave and concave general utilities respectively. We complement our methodological and theoretical findings with promising empirical results showing the scalability potential of our approach compared to existing tabular count-based approaches.
Abstract:Text-based AI system optimization typically involves a feedback loop scheme where a single LLM generates an evaluation in natural language of the current output to improve the next iteration's output. However, in this work, we empirically demonstrate that for a practical and complex task (code generation) with multiple criteria to evaluate, utilizing only one LLM evaluator tends to let errors in generated code go undetected, thus leading to incorrect evaluations and ultimately suboptimal test case performance. Motivated by this failure case, we assume there exists an optimal evaluation policy that samples an evaluation between response and ground truth. We then theoretically prove that a linear combination of multiple evaluators can approximate this optimal policy. From this insight, we propose AI system optimization via Multiple LLM Evaluators (AIME). AIME is an evaluation protocol that utilizes multiple LLMs that each independently generate an evaluation on separate criteria and then combine them via concatenation. We provide an extensive empirical study showing AIME outperforming baseline methods in code generation tasks, with up to $62\%$ higher error detection rate and up to $16\%$ higher success rate than a single LLM evaluation protocol on LeetCodeHard and HumanEval datasets. We also show that the selection of the number of evaluators and which criteria to utilize is non-trivial as it can impact pact success rate by up to $12\%$.
Abstract:In an era of "moving fast and breaking things", regulators have moved slowly to pick up the safety, bias, and legal pieces left in the wake of broken Artificial Intelligence (AI) deployment. Since AI models, such as large language models, are able to push misinformation and stoke division within our society, it is imperative for regulators to employ a framework that mitigates these dangers and ensures user safety. While there is much-warranted discussion about how to address the safety, bias, and legal woes of state-of-the-art AI models, the number of rigorous and realistic mathematical frameworks to regulate AI safety is lacking. We take on this challenge, proposing an auction-based regulatory mechanism that provably incentivizes model-building agents (i) to deploy safer models and (ii) to participate in the regulation process. We provably guarantee, via derived Nash Equilibria, that each participating agent's best strategy is to submit a model safer than a prescribed minimum-safety threshold. Empirical results show that our regulatory auction boosts safety and participation rates by 20% and 15% respectively, outperforming simple regulatory frameworks that merely enforce minimum safety standards.
Abstract:Transfer learning in reinforcement learning (RL) has become a pivotal strategy for improving data efficiency in new, unseen tasks by utilizing knowledge from previously learned tasks. This approach is especially beneficial in real-world deployment scenarios where computational resources are constrained and agents must adapt rapidly to novel environments. However, current state-of-the-art methods often fall short in ensuring safety during the transfer process, particularly when unforeseen risks emerge in the deployment phase. In this work, we address these limitations by introducing a novel Caution-Aware Transfer Learning (CAT) framework. Unlike traditional approaches that limit risk considerations to mean-variance, we define "caution" as a more generalized and comprehensive notion of risk. Our core innovation lies in optimizing a weighted sum of reward return and caution-based on state-action occupancy measures-during the transfer process, allowing for a rich representation of diverse risk factors. To the best of our knowledge, this is the first work to explore the optimization of such a generalized risk notion within the context of transfer RL. Our contributions are threefold: (1) We propose a Caution-Aware Transfer (CAT) framework that evaluates source policies within the test environment and constructs a new policy that balances reward maximization and caution. (2) We derive theoretical sub-optimality bounds for our method, providing rigorous guarantees of its efficacy. (3) We empirically validate CAT, demonstrating that it consistently outperforms existing methods by delivering safer policies under varying risk conditions in the test tasks.
Abstract:While LLMs are proficient at processing text in human conversations, they often encounter difficulties with the nuances of verbal instructions and, thus, remain prone to hallucinate trust in human command. In this work, we present TrustNavGPT, an LLM based audio guided navigation agent that uses affective cues in spoken communication elements such as tone and inflection that convey meaning beyond words, allowing it to assess the trustworthiness of human commands and make effective, safe decisions. Our approach provides a lightweight yet effective approach that extends existing LLMs to model audio vocal features embedded in the voice command and model uncertainty for safe robotic navigation.
Abstract:Embodied Question Answering (EQA) is an important problem, which involves an agent exploring the environment to answer user queries. In the existing literature, EQA has exclusively been studied in single-agent scenarios, where exploration can be time-consuming and costly. In this work, we consider EQA in a multi-agent framework involving multiple large language models (LLM) based agents independently answering queries about a household environment. To generate one answer for each query, we use the individual responses to train a Central Answer Model (CAM) that aggregates responses for a robust answer. Using CAM, we observe a $50\%$ higher EQA accuracy when compared against aggregation methods for ensemble LLM, such as voting schemes and debates. CAM does not require any form of agent communication, alleviating it from the associated costs. We ablate CAM with various nonlinear (neural network, random forest, decision tree, XGBoost) and linear (logistic regression classifier, SVM) algorithms. Finally, we present a feature importance analysis for CAM via permutation feature importance (PFI), quantifying CAMs reliance on each independent agent and query context.
Abstract:Learning control policies to perform complex robotics tasks from human preference data presents significant challenges. On the one hand, the complexity of such tasks typically requires learning policies to perform a variety of subtasks, then combining them to achieve the overall goal. At the same time, comprehensive, well-engineered reward functions are typically unavailable in such problems, while limited human preference data often is; making efficient use of such data to guide learning is therefore essential. Methods for learning to perform complex robotics tasks from human preference data must overcome both these challenges simultaneously. In this work, we introduce DIPPER: Direct Preference Optimization to Accelerate Primitive-Enabled Hierarchical Reinforcement Learning, an efficient hierarchical approach that leverages direct preference optimization to learn a higher-level policy and reinforcement learning to learn a lower-level policy. DIPPER enjoys improved computational efficiency due to its use of direct preference optimization instead of standard preference-based approaches such as reinforcement learning from human feedback, while it also mitigates the well-known hierarchical reinforcement learning issues of non-stationarity and infeasible subgoal generation due to our use of primitive-informed regularization inspired by a novel bi-level optimization formulation of the hierarchical reinforcement learning problem. To validate our approach, we perform extensive experimental analysis on a variety of challenging robotics tasks, demonstrating that DIPPER outperforms hierarchical and non-hierarchical baselines, while ameliorating the non-stationarity and infeasible subgoal generation issues of hierarchical reinforcement learning.