Abstract:Humblebragging is a phenomenon where individuals present self-promotional statements under the guise of modesty or complaints. For example, a statement like, "Ugh, I can't believe I got promoted to lead the entire team. So stressful!", subtly highlights an achievement while pretending to be complaining. Detecting humblebragging is important for machines to better understand the nuances of human language, especially in tasks like sentiment analysis and intent recognition. However, this topic has not yet been studied in computational linguistics. For the first time, we introduce the task of automatically detecting humblebragging in text. We formalize the task by proposing a 4-tuple definition of humblebragging and evaluate machine learning, deep learning, and large language models (LLMs) on this task, comparing their performance with humans. We also create and release a dataset called HB24, containing 3,340 humblebrags generated using GPT-4o. Our experiments show that detecting humblebragging is non-trivial, even for humans. Our best model achieves an F1-score of 0.88. This work lays the foundation for further exploration of this nuanced linguistic phenomenon and its integration into broader natural language understanding systems.
Abstract:This paper tackles the intricate challenge of video question-answering (VideoQA). Despite notable progress, current methods fall short of effectively integrating questions with video frames and semantic object-level abstractions to create question-aware video representations. We introduce Local-Global Question Aware Video Embedding (LGQAVE), which incorporates three major innovations to integrate multi-modal knowledge better and emphasize semantic visual concepts relevant to specific questions. LGQAVE moves beyond traditional ad-hoc frame sampling by utilizing a cross-attention mechanism that precisely identifies the most relevant frames concerning the questions. It captures the dynamics of objects within these frames using distinct graphs, grounding them in question semantics with the miniGPT model. These graphs are processed by a question-aware dynamic graph transformer (Q-DGT), which refines the outputs to develop nuanced global and local video representations. An additional cross-attention module integrates these local and global embeddings to generate the final video embeddings, which a language model uses to generate answers. Extensive evaluations across multiple benchmarks demonstrate that LGQAVE significantly outperforms existing models in delivering accurate multi-choice and open-ended answers.
Abstract:This paper explores the utility of diffusion-based models for anomaly detection, focusing on their efficacy in identifying deviations in both compact and high-resolution datasets. Diffusion-based architectures, including Denoising Diffusion Probabilistic Models (DDPMs) and Diffusion Transformers (DiTs), are evaluated for their performance using reconstruction objectives. By leveraging the strengths of these models, this study benchmarks their performance against traditional anomaly detection methods such as Isolation Forests, One-Class SVMs, and COPOD. The results demonstrate the superior adaptability, scalability, and robustness of diffusion-based methods in handling complex real-world anomaly detection tasks. Key findings highlight the role of reconstruction error in enhancing detection accuracy and underscore the scalability of these models to high-dimensional datasets. Future directions include optimizing encoder-decoder architectures and exploring multi-modal datasets to further advance diffusion-based anomaly detection.
Abstract:The aim of this paper is to formalise the task of continual semi-supervised anomaly detection (CSAD), with the aim of highlighting the importance of such a problem formulation which assumes as close to real-world conditions as possible. After an overview of the relevant definitions of continual semi-supervised learning, its components, anomaly detection extension, and the training protocols; the paper introduces a baseline model of a variational autoencoder (VAE) to work with semi-supervised data along with a continual learning method of deep generative replay with outlier rejection. The results show that such a use of extreme value theory (EVT) applied to anomaly detection can provide promising results even in comparison to an upper baseline of joint training. The results explore the effects of how much labelled and unlabelled data is present, of which class, and where it is located in the data stream. Outlier rejection shows promising initial results where it often surpasses a baseline method of Elastic Weight Consolidation (EWC). A baseline for CSAD is put forward along with the specific dataset setups used for reproducability and testability for other practitioners. Future research directions include other CSAD settings and further research into efficient continual hyperparameter tuning.
Abstract:We propose a Bayesian neural network-based continual learning algorithm using Variational Inference, aiming to overcome several drawbacks of existing methods. Specifically, in continual learning scenarios, storing network parameters at each step to retain knowledge poses challenges. This is compounded by the crucial need to mitigate catastrophic forgetting, particularly given the limited access to past datasets, which complicates maintaining correspondence between network parameters and datasets across all sessions. Current methods using Variational Inference with KL divergence risk catastrophic forgetting during uncertain node updates and coupled disruptions in certain nodes. To address these challenges, we propose the following strategies. To reduce the storage of the dense layer parameters, we propose a parameter distribution learning method that significantly reduces the storage requirements. In the continual learning framework employing variational inference, our study introduces a regularization term that specifically targets the dynamics and population of the mean and variance of the parameters. This term aims to retain the benefits of KL divergence while addressing related challenges. To ensure proper correspondence between network parameters and the data, our method introduces an importance-weighted Evidence Lower Bound term to capture data and parameter correlations. This enables storage of common and distinctive parameter hyperspace bases. The proposed method partitions the parameter space into common and distinctive subspaces, with conditions for effective backward and forward knowledge transfer, elucidating the network-parameter dataset correspondence. The experimental results demonstrate the effectiveness of our method across diverse datasets and various combinations of sequential datasets, yielding superior performance compared to existing approaches.
Abstract:Generalized Category Discovery (GCD) aims to cluster unlabeled images into known and novel categories using labeled images from known classes. To address the challenge of transferring features from known to unknown classes while mitigating model bias, we introduce GraphVL, a novel approach for vision-language modeling in GCD, leveraging CLIP. Our method integrates a graph convolutional network (GCN) with CLIP's text encoder to preserve class neighborhood structure. We also employ a lightweight visual projector for image data, ensuring discriminative features through margin-based contrastive losses for image-text mapping. This neighborhood preservation criterion effectively regulates the semantic space, making it less sensitive to known classes. Additionally, we learn textual prompts from known classes and align them to create a more contextually meaningful semantic feature space for the GCN layer using a contextual similarity loss. Finally, we represent unlabeled samples based on their semantic distance to class prompts from the GCN, enabling semi-supervised clustering for class discovery and minimizing errors. Our experiments on seven benchmark datasets consistently demonstrate the superiority of GraphVL when integrated with the CLIP backbone.
Abstract:Despite advancements in Neural Implicit models for 3D surface reconstruction, handling dynamic environments with arbitrary rigid, non-rigid, or deformable entities remains challenging. Many template-based methods are entity-specific, focusing on humans, while generic reconstruction methods adaptable to such dynamic scenes often require additional inputs like depth or optical flow or rely on pre-trained image features for reasonable outcomes. These methods typically use latent codes to capture frame-by-frame deformations. In contrast, some template-free methods bypass these requirements and adopt traditional LBS (Linear Blend Skinning) weights for a detailed representation of deformable object motions, although they involve complex optimizations leading to lengthy training times. To this end, as a remedy, this paper introduces TFS-NeRF, a template-free 3D semantic NeRF for dynamic scenes captured from sparse or single-view RGB videos, featuring interactions among various entities and more time-efficient than other LBS-based approaches. Our framework uses an Invertible Neural Network (INN) for LBS prediction, simplifying the training process. By disentangling the motions of multiple entities and optimizing per-entity skinning weights, our method efficiently generates accurate, semantically separable geometries. Extensive experiments demonstrate that our approach produces high-quality reconstructions of both deformable and non-deformable objects in complex interactions, with improved training efficiency compared to existing methods.
Abstract:Catastrophic forgetting makes neural network models unstable when learning visual domains consecutively. The neural network model drifts to catastrophic forgetting-induced low performance of previously learnt domains when training with new domains. We illuminate this current neural network model weakness and develop a forgetting-resistant incremental learning strategy. Here, we propose a new unsupervised incremental open-set domain adaptation (IOSDA) issue for image classification. Open-set domain adaptation adds complexity to the incremental domain adaptation issue since each target domain has more classes than the Source domain. In IOSDA, the model learns training with domain streams phase by phase in incremented time. Inference uses test data from all target domains without revealing their identities. We proposed IOSDA-Net, a two-stage learning pipeline, to solve the problem. The first module replicates prior domains from random noise using a generative framework and creates a pseudo source domain. In the second step, this pseudo source is adapted to the present target domain. We test our model on Office-Home, DomainNet, and UPRN-RSDA, a newly curated optical remote sensing dataset.
Abstract:Multi-Target Domain Adaptation (MTDA) entails learning domain-invariant information from a single source domain and applying it to multiple unlabeled target domains. Yet, existing MTDA methods predominantly focus on addressing domain shifts within visual features, often overlooking semantic features and struggling to handle unknown classes, resulting in what is known as Open-Set (OS) MTDA. While large-scale vision-language foundation models like CLIP show promise, their potential for MTDA remains largely unexplored. This paper introduces COSMo, a novel method that learns domain-agnostic prompts through source domain-guided prompt learning to tackle the MTDA problem in the prompt space. By leveraging a domain-specific bias network and separate prompts for known and unknown classes, COSMo effectively adapts across domain and class shifts. To the best of our knowledge, COSMo is the first method to address Open-Set Multi-Target DA (OSMTDA), offering a more realistic representation of real-world scenarios and addressing the challenges of both open-set and multi-target DA. COSMo demonstrates an average improvement of $5.1\%$ across three challenging datasets: Mini-DomainNet, Office-31, and Office-Home, compared to other related DA methods adapted to operate within the OSMTDA setting. Code is available at: https://github.com/munish30monga/COSMo
Abstract:We address the challenges inherent in sketch-based image retrieval (SBIR) across various settings, including zero-shot SBIR, generalized zero-shot SBIR, and fine-grained zero-shot SBIR, by leveraging the vision-language foundation model, CLIP. While recent endeavors have employed CLIP to enhance SBIR, these approaches predominantly follow uni-modal prompt processing and overlook to fully exploit CLIP's integrated visual and textual capabilities. To bridge this gap, we introduce SpLIP, a novel multi-modal prompt learning scheme designed to operate effectively with frozen CLIP backbones. We diverge from existing multi-modal prompting methods that either treat visual and textual prompts independently or integrate them in a limited fashion, leading to suboptimal generalization. SpLIP implements a bi-directional prompt-sharing strategy that enables mutual knowledge exchange between CLIP's visual and textual encoders, fostering a more cohesive and synergistic prompt processing mechanism that significantly reduces the semantic gap between the sketch and photo embeddings. In addition to pioneering multi-modal prompt learning, we propose two innovative strategies for further refining the embedding space. The first is an adaptive margin generation for the sketch-photo triplet loss, regulated by CLIP's class textual embeddings. The second introduces a novel task, termed conditional cross-modal jigsaw, aimed at enhancing fine-grained sketch-photo alignment, by focusing on implicitly modelling the viable patch arrangement of sketches using knowledge of unshuffled photos. Our comprehensive experimental evaluations across multiple benchmarks demonstrate the superior performance of SpLIP in all three SBIR scenarios. Code is available at https://github.com/mainaksingha01/SpLIP.