Abstract:Organizing unstructured visual data into semantic clusters is a key challenge in computer vision. Traditional deep clustering (DC) approaches focus on a single partition of data, while multiple clustering (MC) methods address this limitation by uncovering distinct clustering solutions. The rise of large language models (LLMs) and multimodal LLMs (MLLMs) has enhanced MC by allowing users to define clustering criteria in natural language. However, manually specifying criteria for large datasets is impractical. In this work, we introduce the task Semantic Multiple Clustering (SMC) that aims to automatically discover clustering criteria from large image collections, uncovering interpretable substructures without requiring human input. Our framework, Text Driven Semantic Multiple Clustering (TeDeSC), uses text as a proxy to concurrently reason over large image collections, discover partitioning criteria, expressed in natural language, and reveal semantic substructures. To evaluate TeDeSC, we introduce the COCO-4c and Food-4c benchmarks, each containing four grouping criteria and ground-truth annotations. We apply TeDeSC to various applications, such as discovering biases and analyzing social media image popularity, demonstrating its utility as a tool for automatically organizing image collections and revealing novel insights.
Abstract:Machine unlearning (MU) aims to erase data from a model as if it never saw them during training. To this extent, existing MU approaches assume complete or partial access to the training data, which can be limited over time due to privacy regulations. However, no setting or benchmark exists to probe the effectiveness of MU methods in such scenarios, i.e. when training data is missing. To fill this gap, we propose a novel task we call One-Shot Unlearning of Personal Identities (O-UPI) that evaluates unlearning models when the training data is not accessible. Specifically, we focus on the identity unlearning case, which is relevant due to current regulations requiring data deletion after training. To cope with data absence, we expect users to provide a portraiting picture to perform unlearning. To evaluate methods in O-UPI, we benchmark the forgetting on CelebA and CelebA-HQ datasets with different unlearning set sizes. We test applicable methods on this challenging benchmark, proposing also an effective method that meta-learns to forget identities from a single image. Our findings indicate that existing approaches struggle when data availability is limited, with greater difficulty when there is dissimilarity between provided samples and data used at training time. We will release the code and benchmark upon acceptance.
Abstract:Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane
Abstract:Identifying subordinate-level categories from images is a longstanding task in computer vision and is referred to as fine-grained visual recognition (FGVR). It has tremendous significance in real-world applications since an average layperson does not excel at differentiating species of birds or mushrooms due to subtle differences among the species. A major bottleneck in developing FGVR systems is caused by the need of high-quality paired expert annotations. To circumvent the need of expert knowledge we propose Fine-grained Semantic Category Reasoning (FineR) that internally leverages the world knowledge of large language models (LLMs) as a proxy in order to reason about fine-grained category names. In detail, to bridge the modality gap between images and LLM, we extract part-level visual attributes from images as text and feed that information to a LLM. Based on the visual attributes and its internal world knowledge the LLM reasons about the subordinate-level category names. Our training-free FineR outperforms several state-of-the-art FGVR and language and vision assistant models and shows promise in working in the wild and in new domains where gathering expert annotation is arduous.
Abstract:Domain Generalized Semantic Segmentation (DGSS) deals with training a model on a labeled source domain with the aim of generalizing to unseen domains during inference. Existing DGSS methods typically effectuate robust features by means of Domain Randomization (DR). Such an approach is often limited as it can only account for style diversification and not content. In this work, we take an orthogonal approach to DGSS and propose to use an assembly of CoLlaborative FOUndation models for Domain Generalized Semantic Segmentation (CLOUDS). In detail, CLOUDS is a framework that integrates FMs of various kinds: (i) CLIP backbone for its robust feature representation, (ii) generative models to diversify the content, thereby covering various modes of the possible target distribution, and (iii) Segment Anything Model (SAM) for iteratively refining the predictions of the segmentation model. Extensive experiments show that our CLOUDS excels in adapting from synthetic to real DGSS benchmarks and under varying weather conditions, notably outperforming prior methods by 5.6% and 6.7% on averaged miou, respectively. The code is available at : https://github.com/yasserben/CLOUDS
Abstract:In this work, we study the problem of continual learning (CL) where the goal is to learn a model on a sequence of tasks, such that the data from the previous tasks becomes unavailable while learning on the current task data. CL is essentially a balancing act between being able to learn on the new task (i.e., plasticity) and maintaining the performance on the previously learned concepts (i.e., stability). With an aim to address the stability-plasticity trade-off, we propose to perform weight-ensembling of the model parameters of the previous and current task. This weight-ensembled model, which we call Continual Model Averaging (or CoMA), attains high accuracy on the current task by leveraging plasticity, while not deviating too far from the previous weight configuration, ensuring stability. We also propose an improved variant of CoMA, named Continual Fisher-weighted Model Averaging (or CoFiMA), that selectively weighs each parameter in the weight ensemble by leveraging the Fisher information of the weights of the model. Both the variants are conceptually simple, easy to implement, and effective in attaining state-of-the-art performance on several standard CL benchmarks.
Abstract:Class-incremental learning (CIL) is a challenging task that involves continually learning to categorize classes into new tasks without forgetting previously learned information. The advent of the large pre-trained models (PTMs) has fast-tracked the progress in CIL due to the highly transferable PTM representations, where tuning a small set of parameters results in state-of-the-art performance when compared with the traditional CIL methods that are trained from scratch. However, repeated fine-tuning on each task destroys the rich representations of the PTMs and further leads to forgetting previous tasks. To strike a balance between the stability and plasticity of PTMs for CIL, we propose a novel perspective of eliminating training on every new task and instead performing test-time adaptation (TTA) directly on the test instances. Concretely, we propose "Test-Time Adaptation for Class-Incremental Learning" (TTACIL) that first fine-tunes Layer Norm parameters of the PTM on each test instance for learning task-specific features, and then resets them back to the base model to preserve stability. As a consequence, TTACIL does not undergo any forgetting, while benefiting each task with the rich PTM features. Additionally, by design, our method is robust to common data corruptions. Our TTACIL outperforms several state-of-the-art CIL methods when evaluated on multiple CIL benchmarks under both clean and corrupted data.
Abstract:Source-Free Video Unsupervised Domain Adaptation (SFVUDA) task consists in adapting an action recognition model, trained on a labelled source dataset, to an unlabelled target dataset, without accessing the actual source data. The previous approaches have attempted to address SFVUDA by leveraging self-supervision (e.g., enforcing temporal consistency) derived from the target data itself. In this work, we take an orthogonal approach by exploiting "web-supervision" from Large Language-Vision Models (LLVMs), driven by the rationale that LLVMs contain a rich world prior surprisingly robust to domain-shift. We showcase the unreasonable effectiveness of integrating LLVMs for SFVUDA by devising an intuitive and parameter-efficient method, which we name Domain Adaptation with Large Language-Vision models (DALL-V), that distills the world prior and complementary source model information into a student network tailored for the target. Despite the simplicity, DALL-V achieves significant improvement over state-of-the-art SFVUDA methods.
Abstract:To overcome the domain gap between synthetic and real-world datasets, unsupervised domain adaptation methods have been proposed for semantic segmentation. Majority of the previous approaches have attempted to reduce the gap either at the pixel or feature level, disregarding the fact that the two components interact positively. To address this, we present CONtrastive FEaTure and pIxel alignment (CONFETI) for bridging the domain gap at both the pixel and feature levels using a unique contrastive formulation. We introduce well-estimated prototypes by including category-wise cross-domain information to link the two alignments: the pixel-level alignment is achieved using the jointly trained style transfer module with the prototypical semantic consistency, while the feature-level alignment is enforced to cross-domain features with the \textbf{pixel-to-prototype contrast}. Our extensive experiments demonstrate that our method outperforms existing state-of-the-art methods using DeepLabV2. Our code is available at https://github.com/cxa9264/CONFETI
Abstract:Class-incremental semantic image segmentation assumes multiple model updates, each enriching the model to segment new categories. This is typically carried out by providing expensive pixel-level annotations to the training algorithm for all new objects, limiting the adoption of such methods in practical applications. Approaches that solely require image-level labels offer an attractive alternative, yet, such coarse annotations lack precise information about the location and boundary of the new objects. In this paper we argue that, since classes represent not just indices but semantic entities, the conceptual relationships between them can provide valuable information that should be leveraged. We propose a weakly supervised approach that exploits such semantic relations to transfer objectness prior from the previously learned classes into the new ones, complementing the supervisory signal from image-level labels. We validate our approach on a number of continual learning tasks, and show how even a simple pairwise interaction between classes can significantly improve the segmentation mask quality of both old and new classes. We show these conclusions still hold for longer and, hence, more realistic sequences of tasks and for a challenging few-shot scenario.