Abstract:Our goal is to generate realistic human motion from natural language. Modern methods often face a trade-off between model expressiveness and text-to-motion alignment. Some align text and motion latent spaces but sacrifice expressiveness; others rely on diffusion models producing impressive motions, but lacking semantic meaning in their latent space. This may compromise realism, diversity, and applicability. Here, we address this by combining latent diffusion with a realignment mechanism, producing a novel, semantically structured space that encodes the semantics of language. Leveraging this capability, we introduce the task of textual motion inversion to capture novel motion concepts from a few examples. For motion synthesis, we evaluate LEAD on HumanML3D and KIT-ML and show comparable performance to the state-of-the-art in terms of realism, diversity, and text-motion consistency. Our qualitative analysis and user study reveal that our synthesized motions are sharper, more human-like and comply better with the text compared to modern methods. For motion textual inversion, our method demonstrates improved capacity in capturing out-of-distribution characteristics in comparison to traditional VAEs.
Abstract:Image style transfer has attracted widespread attention in the past few years. Despite its remarkable results, it requires additional style images available as references, making it less flexible and inconvenient. Using text is the most natural way to describe the style. More importantly, text can describe implicit abstract styles, like styles of specific artists or art movements. In this paper, we propose a Contrastive Learning for Artistic Style Transfer (CLAST) that leverages advanced image-text encoders to control arbitrary style transfer. We introduce a supervised contrastive training strategy to effectively extract style descriptions from the image-text model (i.e., CLIP), which aligns stylization with the text description. To this end, we also propose a novel and efficient adaLN based state space models that explore style-content fusion. Finally, we achieve a text-driven image style transfer. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods in artistic style transfer. More importantly, it does not require online fine-tuning and can render a 512x512 image in 0.03s.
Abstract:Multimodality has recently gained attention in the medical domain, where imaging or video modalities may be integrated with biomedical signals or health records. Yet, two challenges remain: balancing the contributions of modalities, especially in cases with a limited amount of data available, and tackling missing modalities. To address both issues, in this paper, we introduce the AnchoreD multimodAl Physiological Transformer (ADAPT), a multimodal, scalable framework with two key components: (i) aligning all modalities in the space of the strongest, richest modality (called anchor) to learn a joint embedding space, and (ii) a Masked Multimodal Transformer, leveraging both inter- and intra-modality correlations while handling missing modalities. We focus on detecting physiological changes in two real-life scenarios: stress in individuals induced by specific triggers and fighter pilots' loss of consciousness induced by $g$-forces. We validate the generalizability of ADAPT through extensive experiments on two datasets for these tasks, where we set the new state of the art while demonstrating its robustness across various modality scenarios and its high potential for real-life applications.
Abstract:Stories and emotions in movies emerge through the effect of well-thought-out directing decisions, in particular camera placement and movement over time. Crafting compelling camera trajectories remains a complex iterative process, even for skilful artists. To tackle this, in this paper, we propose a dataset called the Exceptional Trajectories (E.T.) with camera trajectories along with character information and textual captions encompassing descriptions of both camera and character. To our knowledge, this is the first dataset of its kind. To show the potential applications of the E.T. dataset, we propose a diffusion-based approach, named DIRECTOR, which generates complex camera trajectories from textual captions that describe the relation and synchronisation between the camera and characters. To ensure robust and accurate evaluations, we train on the E.T. dataset CLaTr, a Contrastive Language-Trajectory embedding for evaluation metrics. We posit that our proposed dataset and method significantly advance the democratization of cinematography, making it more accessible to common users.
Abstract:Recent advances in vision-language models have significantly propelled video understanding. Existing datasets and tasks, however, have notable limitations. Most datasets are confined to short videos with limited events and narrow narratives. For example, datasets with instructional and egocentric videos often document the activities of one person in a single scene. Although some movie datasets offer richer content, they are often limited to short-term tasks, lack publicly available videos and frequently encounter data leakage given the use of movie forums and other resources in LLM training. To address the above limitations, we propose the Short Film Dataset (SFD) with 1,078 publicly available amateur movies, a wide variety of genres and minimal data leakage issues. SFD offers long-term story-oriented video tasks in the form of multiple-choice and open-ended question answering. Our extensive experiments emphasize the need for long-term reasoning to solve SFD tasks. Notably, we find strong signals in movie transcripts leading to the on-par performance of people and LLMs. We also show significantly lower performance of current models compared to people when using vision data alone.
Abstract:Conditional diffusion models are powerful generative models that can leverage various types of conditional information, such as class labels, segmentation masks, or text captions. However, in many real-world scenarios, conditional information may be noisy or unreliable due to human annotation errors or weak alignment. In this paper, we propose the Coherence-Aware Diffusion (CAD), a novel method that integrates coherence in conditional information into diffusion models, allowing them to learn from noisy annotations without discarding data. We assume that each data point has an associated coherence score that reflects the quality of the conditional information. We then condition the diffusion model on both the conditional information and the coherence score. In this way, the model learns to ignore or discount the conditioning when the coherence is low. We show that CAD is theoretically sound and empirically effective on various conditional generation tasks. Moreover, we show that leveraging coherence generates realistic and diverse samples that respect conditional information better than models trained on cleaned datasets where samples with low coherence have been discarded.
Abstract:Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-to-image diffusion models. It operates by combining the conditional and unconditional predictions using a fixed weight. However, recent works vary the weights throughout the diffusion process, reporting superior results but without providing any rationale or analysis. By conducting comprehensive experiments, this paper provides insights into CFG weight schedulers. Our findings suggest that simple, monotonically increasing weight schedulers consistently lead to improved performances, requiring merely a single line of code. In addition, more complex parametrized schedulers can be optimized for further improvement, but do not generalize across different models and tasks.
Abstract:Automatically understanding funny moments (i.e., the moments that make people laugh) when watching comedy is challenging, as they relate to various features, such as body language, dialogues and culture. In this paper, we propose FunnyNet-W, a model that relies on cross- and self-attention for visual, audio and text data to predict funny moments in videos. Unlike most methods that rely on ground truth data in the form of subtitles, in this work we exploit modalities that come naturally with videos: (a) video frames as they contain visual information indispensable for scene understanding, (b) audio as it contains higher-level cues associated with funny moments, such as intonation, pitch and pauses and (c) text automatically extracted with a speech-to-text model as it can provide rich information when processed by a Large Language Model. To acquire labels for training, we propose an unsupervised approach that spots and labels funny audio moments. We provide experiments on five datasets: the sitcoms TBBT, MHD, MUStARD, Friends, and the TED talk UR-Funny. Extensive experiments and analysis show that FunnyNet-W successfully exploits visual, auditory and textual cues to identify funny moments, while our findings reveal FunnyNet-W's ability to predict funny moments in the wild. FunnyNet-W sets the new state of the art for funny moment detection with multimodal cues on all datasets with and without using ground truth information.
Abstract:Domain Generalized Semantic Segmentation (DGSS) deals with training a model on a labeled source domain with the aim of generalizing to unseen domains during inference. Existing DGSS methods typically effectuate robust features by means of Domain Randomization (DR). Such an approach is often limited as it can only account for style diversification and not content. In this work, we take an orthogonal approach to DGSS and propose to use an assembly of CoLlaborative FOUndation models for Domain Generalized Semantic Segmentation (CLOUDS). In detail, CLOUDS is a framework that integrates FMs of various kinds: (i) CLIP backbone for its robust feature representation, (ii) generative models to diversify the content, thereby covering various modes of the possible target distribution, and (iii) Segment Anything Model (SAM) for iteratively refining the predictions of the segmentation model. Extensive experiments show that our CLOUDS excels in adapting from synthetic to real DGSS benchmarks and under varying weather conditions, notably outperforming prior methods by 5.6% and 6.7% on averaged miou, respectively. The code is available at : https://github.com/yasserben/CLOUDS
Abstract:Video Object Segmentation (VOS) is crucial for several applications, from video editing to video data generation. Training a VOS model requires an abundance of manually labeled training videos. The de-facto traditional way of annotating objects requires humans to draw detailed segmentation masks on the target objects at each video frame. This annotation process, however, is tedious and time-consuming. To reduce this annotation cost, in this paper, we propose EVA-VOS, a human-in-the-loop annotation framework for video object segmentation. Unlike the traditional approach, we introduce an agent that predicts iteratively both which frame ("What") to annotate and which annotation type ("How") to use. Then, the annotator annotates only the selected frame that is used to update a VOS module, leading to significant gains in annotation time. We conduct experiments on the MOSE and the DAVIS datasets and we show that: (a) EVA-VOS leads to masks with accuracy close to the human agreement 3.5x faster than the standard way of annotating videos; (b) our frame selection achieves state-of-the-art performance; (c) EVA-VOS yields significant performance gains in terms of annotation time compared to all other methods and baselines.