Abstract:Mitigating biases in generative AI and, particularly in text-to-image models, is of high importance given their growing implications in society. The biased datasets used for training pose challenges in ensuring the responsible development of these models, and mitigation through hard prompting or embedding alteration, are the most common present solutions. Our work introduces a novel approach to achieve diverse and inclusive synthetic images by learning a direction in the latent space and solely modifying the initial Gaussian noise provided for the diffusion process. Maintaining a neutral prompt and untouched embeddings, this approach successfully adapts to diverse debiasing scenarios, such as geographical biases. Moreover, our work proves it is possible to linearly combine these learned latent directions to introduce new mitigations, and if desired, integrate it with text embedding adjustments. Furthermore, text-to-image models lack transparency for assessing bias in outputs, unless visually inspected. Thus, we provide a tool to empower developers to select their desired concepts to mitigate. The project page with code is available online.
Abstract:As the global population ages, the number of fall-related incidents is on the rise. Effective fall detection systems, specifically in healthcare sector, are crucial to mitigate the risks associated with such events. This study evaluates the role of visual context, including background objects, on the accuracy of fall detection classifiers. We present a segmentation pipeline to semi-automatically separate individuals and objects in images. Well-established models like ResNet-18, EfficientNetV2-S, and Swin-Small are trained and evaluated. During training, pixel-based transformations are applied to segmented objects, and the models are then evaluated on raw images without segmentation. Our findings highlight the significant influence of visual context on fall detection. The application of Gaussian blur to the image background notably improves the performance and generalization capabilities of all models. Background objects such as beds, chairs, or wheelchairs can challenge fall detection systems, leading to false positive alarms. However, we demonstrate that object-specific contextual transformations during training effectively mitigate this challenge. Further analysis using saliency maps supports our observation that visual context is crucial in classification tasks. We create both dataset processing API and segmentation pipeline, available at https://github.com/A-NGJ/image-segmentation-cli.
Abstract:In this paper, we are interested in addressing the problem of damage assessment for vehicles, such as cars. This task requires not only detecting the location and the extent of the damage but also identifying the damaged part. To train a computer vision system for the semantic part and damage segmentation in images, we need to manually annotate images with costly pixel annotations for both part categories and damage types. To overcome this need, we propose to use synthetic data to train these models. Synthetic data can provide samples with high variability, pixel-accurate annotations, and arbitrarily large training sets without any human intervention. We propose a procedural generation pipeline that damages 3D car models and we obtain synthetic 2D images of damaged cars paired with pixel-accurate annotations for part and damage categories. To validate our idea, we execute our pipeline and render our CrashCar101 dataset. We run experiments on three real datasets for the tasks of part and damage segmentation. For part segmentation, we show that the segmentation models trained on a combination of real data and our synthetic data outperform all models trained only on real data. For damage segmentation, we show the sim2real transfer ability of CrashCar101.
Abstract:Video Object Segmentation (VOS) is crucial for several applications, from video editing to video data generation. Training a VOS model requires an abundance of manually labeled training videos. The de-facto traditional way of annotating objects requires humans to draw detailed segmentation masks on the target objects at each video frame. This annotation process, however, is tedious and time-consuming. To reduce this annotation cost, in this paper, we propose EVA-VOS, a human-in-the-loop annotation framework for video object segmentation. Unlike the traditional approach, we introduce an agent that predicts iteratively both which frame ("What") to annotate and which annotation type ("How") to use. Then, the annotator annotates only the selected frame that is used to update a VOS module, leading to significant gains in annotation time. We conduct experiments on the MOSE and the DAVIS datasets and we show that: (a) EVA-VOS leads to masks with accuracy close to the human agreement 3.5x faster than the standard way of annotating videos; (b) our frame selection achieves state-of-the-art performance; (c) EVA-VOS yields significant performance gains in terms of annotation time compared to all other methods and baselines.
Abstract:In this paper, we are interested in modeling a how-to instructional procedure, such as a cooking recipe, with a meaningful and rich high-level representation. Specifically, we propose to represent cooking recipes and food images as cooking programs. Programs provide a structured representation of the task, capturing cooking semantics and sequential relationships of actions in the form of a graph. This allows them to be easily manipulated by users and executed by agents. To this end, we build a model that is trained to learn a joint embedding between recipes and food images via self-supervision and jointly generate a program from this embedding as a sequence. To validate our idea, we crowdsource programs for cooking recipes and show that: (a) projecting the image-recipe embeddings into programs leads to better cross-modal retrieval results; (b) generating programs from images leads to better recognition results compared to predicting raw cooking instructions; and (c) we can generate food images by manipulating programs via optimizing the latent code of a GAN. Code, data, and models are available online.
Abstract:Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events. Fortunately, technology can play a role in these situations. Social media posts can be used as a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated methods. Prior work has mostly focused on text-based filtering, yet image and video-based filtering remains largely unexplored. In this work, we present the Incidents1M Dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49 place categories. We provide details of the dataset construction, statistics and potential biases; introduce and train a model for incident detection; and perform image-filtering experiments on millions of images on Flickr and Twitter. We also present some applications on incident analysis to encourage and enable future work in computer vision for humanitarian aid. Code, data, and models are available at http://incidentsdataset.csail.mit.edu.
Abstract:Manually annotating object segmentation masks is very time-consuming. While interactive segmentation methods offer a more efficient alternative, they become unaffordable at a large scale because the cost grows linearly with the number of annotated masks. In this paper, we propose a highly efficient annotation scheme for building large datasets with object segmentation masks. At a large scale, images contain many object instances with similar appearance. We exploit these similarities by using hierarchical clustering on mask predictions made by a segmentation model. We propose a scheme that efficiently searches through the hierarchy of clusters and selects which clusters to annotate. Humans manually verify only a few masks per cluster, and the labels are propagated to the whole cluster. Through a large-scale experiment to populate 1M unlabeled images with object segmentation masks for 80 object classes, we show that (1) we obtain 1M object segmentation masks with an total annotation time of only 290 hours; (2) we reduce annotation time by 76x compared to manual annotation; (3) the segmentation quality of our masks is on par with those from manually annotated datasets. Code, data, and models are available online.
Abstract:Responding to natural disasters, such as earthquakes, floods, and wildfires, is a laborious task performed by on-the-ground emergency responders and analysts. Social media has emerged as a low-latency data source to quickly understand disaster situations. While most studies on social media are limited to text, images offer more information for understanding disaster and incident scenes. However, no large-scale image datasets for incident detection exists. In this work, we present the Incidents Dataset, which contains 446,684 images annotated by humans that cover 43 incidents across a variety of scenes. We employ a baseline classification model that mitigates false-positive errors and we perform image filtering experiments on millions of social media images from Flickr and Twitter. Through these experiments, we show how the Incidents Dataset can be used to detect images with incidents in the wild. Code, data, and models are available online at http://incidentsdataset.csail.mit.edu.
Abstract:A food recipe is an ordered set of instructions for preparing a particular dish. From a visual perspective, every instruction step can be seen as a way to change the visual appearance of the dish by adding extra objects (e.g., adding an ingredient) or changing the appearance of the existing ones (e.g., cooking the dish). In this paper, we aim to teach a machine how to make a pizza by building a generative model that mirrors this step-by-step procedure. To do so, we learn composable module operations which are able to either add or remove a particular ingredient. Each operator is designed as a Generative Adversarial Network (GAN). Given only weak image-level supervision, the operators are trained to generate a visual layer that needs to be added to or removed from the existing image. The proposed model is able to decompose an image into an ordered sequence of layers by applying sequentially in the right order the corresponding removing modules. Experimental results on synthetic and real pizza images demonstrate that our proposed model is able to: (1) segment pizza toppings in a weaklysupervised fashion, (2) remove them by revealing what is occluded underneath them (i.e., inpainting), and (3) infer the ordering of the toppings without any depth ordering supervision. Code, data, and models are available online.
Abstract:Manually annotating object bounding boxes is central to building computer vision datasets, and it is very time consuming (annotating ILSVRC [53] took 35s for one high-quality box [62]). It involves clicking on imaginary corners of a tight box around the object. This is difficult as these corners are often outside the actual object and several adjustments are required to obtain a tight box. We propose extreme clicking instead: we ask the annotator to click on four physical points on the object: the top, bottom, left- and right-most points. This task is more natural and these points are easy to find. We crowd-source extreme point annotations for PASCAL VOC 2007 and 2012 and show that (1) annotation time is only 7s per box, 5x faster than the traditional way of drawing boxes [62]; (2) the quality of the boxes is as good as the original ground-truth drawn the traditional way; (3) detectors trained on our annotations are as accurate as those trained on the original ground-truth. Moreover, our extreme clicking strategy not only yields box coordinates, but also four accurate boundary points. We show (4) how to incorporate them into GrabCut to obtain more accurate segmentations than those delivered when initializing it from bounding boxes; (5) semantic segmentations models trained on these segmentations outperform those trained on segmentations derived from bounding boxes.