Abstract:As rapidly growing AI computational demands accelerate the need for new hardware installation and maintenance, this work explores optimal data center resource management by balancing operational efficiency with fault tolerance through strategic rack positioning considering diverse resources and locations. Traditional mixed-integer programming (MIP) approaches often struggle with scalability, while heuristic methods may result in significant sub-optimality. To address these issues, this paper presents a novel two-tier optimization framework using a high-level deep reinforcement learning (DRL) model to guide a low-level gradient-based heuristic for local search. The high-level DRL agent employs Leader Reward for optimal rack type ordering, and the low-level heuristic efficiently maps racks to positions, minimizing movement counts and ensuring fault-tolerant resource distribution. This approach allows scalability to over 100,000 positions and 100 rack types. Our method outperformed the gradient-based heuristic by 7\% on average and the MIP solver by over 30\% in objective value. It achieved a 100\% success rate versus MIP's 97.5\% (within a 20-minute limit), completing in just 2 minutes compared to MIP's 1630 minutes (i.e., almost 4 orders of magnitude improvement). Unlike the MIP solver, which showed performance variability under time constraints and high penalties, our algorithm consistently delivered stable, efficient results - an essential feature for large-scale data center management.
Abstract:Text-to-image (T2I) diffusion models have made remarkable advancements, yet aligning them with diverse preferences remains a persistent challenge. Current methods often optimize single metrics or depend on narrowly curated datasets, leading to overfitting and limited generalization across key visual quality metrics. We present BalancedDPO, a novel extension of Direct Preference Optimization (DPO) that addresses these limitations by simultaneously aligning T2I diffusion models with multiple metrics, including human preference, CLIP score, and aesthetic quality. Our key novelty lies in aggregating consensus labels from diverse metrics in the preference distribution space as compared to existing reward mixing approaches, enabling robust and scalable multi-metric alignment while maintaining the simplicity of the standard DPO pipeline that we refer to as BalancedDPO. Our evaluations on the Pick-a-Pic, PartiPrompt and HPD datasets show that BalancedDPO achieves state-of-the-art results, outperforming existing approaches across all major metrics. BalancedDPO improves the average win rates by 15%, 7.1%, and 10.3% on Pick-a-pic, PartiPrompt and HPD, respectively, from the DiffusionDPO.
Abstract:In this paper, we study bi-criteria optimization for combinatorial multi-armed bandits (CMAB) with bandit feedback. We propose a general framework that transforms discrete bi-criteria offline approximation algorithms into online algorithms with sublinear regret and cumulative constraint violation (CCV) guarantees. Our framework requires the offline algorithm to provide an $(\alpha, \beta)$-bi-criteria approximation ratio with $\delta$-resilience and utilize $\texttt{N}$ oracle calls to evaluate the objective and constraint functions. We prove that the proposed framework achieves sub-linear regret and CCV, with both bounds scaling as ${O}\left(\delta^{2/3} \texttt{N}^{1/3}T^{2/3}\log^{1/3}(T)\right)$. Crucially, the framework treats the offline algorithm with $\delta$-resilience as a black box, enabling flexible integration of existing approximation algorithms into the CMAB setting. To demonstrate its versatility, we apply our framework to several combinatorial problems, including submodular cover, submodular cost covering, and fair submodular maximization. These applications highlight the framework's broad utility in adapting offline guarantees to online bi-criteria optimization under bandit feedback.
Abstract:We present the first finite-sample analysis for policy evaluation in robust average-reward Markov Decision Processes (MDPs). Prior works in this setting have established only asymptotic convergence guarantees, leaving open the question of sample complexity. In this work, we address this gap by establishing that the robust Bellman operator is a contraction under the span semi-norm, and developing a stochastic approximation framework with controlled bias. Our approach builds upon Multi-Level Monte Carlo (MLMC) techniques to estimate the robust Bellman operator efficiently. To overcome the infinite expected sample complexity inherent in standard MLMC, we introduce a truncation mechanism based on a geometric distribution, ensuring a finite constant sample complexity while maintaining a small bias that decays exponentially with the truncation level. Our method achieves the order-optimal sample complexity of $\tilde{\mathcal{O}}(\epsilon^{-2})$ for robust policy evaluation and robust average reward estimation, marking a significant advancement in robust reinforcement learning theory.
Abstract:Projection-based algorithms for constrained Online Convex Optimization (COCO) face scalability challenges in high-dimensional settings due to the computational complexity of projecting iterates onto constraint sets. This paper introduces a projection-free algorithm for COCO that achieves state-of-the-art performance guarantees while eliminating the need for projections. By integrating a separation oracle with adaptive Online Gradient Descent (OGD) and employing a Lyapunov-driven surrogate function, while dynamically adjusting step sizes using gradient norms, our method jointly optimizes the regret and cumulative constraint violation (CCV). We also use a blocked version of OGD that helps achieve tradeoffs betweeen the regret and CCV with the number of calls to the separation oracle. For convex cost functions, our algorithm attains an optimal regret of $\mathcal{O}(\sqrt{T})$ and a CCV of $\mathcal{O}(\sqrt{T} \log T)$, matching the best-known projection-based results, while only using $\tilde{\mathcal{O}}({T})$ calls to the separation oracle. The results also demonstrate a tradeoff where lower calls to the separation oracle increase the regret and the CCV. In the strongly convex setting, we further achieve a regret of $\mathcal{O}(\log T)$ and a CCV of $\mathcal{O}(\sqrt{T\log T} )$, while requiring ${\mathcal{O}}({T}^2)$ calls to the separation oracle. Further, tradeoff with the decreasing oracle calls is studied. These results close the gap between projection-free and projection-based approaches, demonstrating that projection-free methods can achieve performance comparable to projection-based counterparts.
Abstract:Optimizing expensive, non-convex, black-box Lipschitz continuous functions presents significant challenges, particularly when the Lipschitz constant of the underlying function is unknown. Such problems often demand numerous function evaluations to approximate the global optimum, which can be prohibitive in terms of time, energy, or resources. In this work, we introduce Every Call is Precious (ECP), a novel global optimization algorithm that minimizes unpromising evaluations by strategically focusing on potentially optimal regions. Unlike previous approaches, ECP eliminates the need to estimate the Lipschitz constant, thereby avoiding additional function evaluations. ECP guarantees no-regret performance for infinite evaluation budgets and achieves minimax-optimal regret bounds within finite budgets. Extensive ablation studies validate the algorithm's robustness, while empirical evaluations show that ECP outperforms 10 benchmark algorithms including Lipschitz, Bayesian, bandits, and evolutionary methods across 30 multi-dimensional non-convex synthetic and real-world optimization problems, which positions ECP as a competitive approach for global optimization.
Abstract:We introduce a novel framework for decentralized projection-free optimization, extending projection-free methods to a broader class of upper-linearizable functions. Our approach leverages decentralized optimization techniques with the flexibility of upper-linearizable function frameworks, effectively generalizing traditional DR-submodular function optimization. We obtain the regret of $O(T^{1-\theta/2})$ with communication complexity of $O(T^{\theta})$ and number of linear optimization oracle calls of $O(T^{2\theta})$ for decentralized upper-linearizable function optimization, for any $0\le \theta \le 1$. This approach allows for the first results for monotone up-concave optimization with general convex constraints and non-monotone up-concave optimization with general convex constraints. Further, the above results for first order feedback are extended to zeroth order, semi-bandit, and bandit feedback.
Abstract:We address the problem of quantum reinforcement learning (QRL) under model-free settings with quantum oracle access to the Markov Decision Process (MDP). This paper introduces a Quantum Natural Policy Gradient (QNPG) algorithm, which replaces the random sampling used in classical Natural Policy Gradient (NPG) estimators with a deterministic gradient estimation approach, enabling seamless integration into quantum systems. While this modification introduces a bounded bias in the estimator, the bias decays exponentially with increasing truncation levels. This paper demonstrates that the proposed QNPG algorithm achieves a sample complexity of $\tilde{\mathcal{O}}(\epsilon^{-1.5})$ for queries to the quantum oracle, significantly improving the classical lower bound of $\tilde{\mathcal{O}}(\epsilon^{-2})$ for queries to the MDP.
Abstract:Network services are increasingly managed by considering chained-up virtual network functions and relevant traffic flows, known as the Service Function Chains (SFCs). To deal with sequential arrivals of SFCs in an online fashion, we must consider two closely-coupled problems - an SFC placement problem that maps SFCs to servers/links in the network and an SFC scheduling problem that determines when each SFC is executed. Solving the whole SFC problem targeting these two optimizations jointly is extremely challenging. In this paper, we propose a novel network diffuser using conditional generative modeling for this SFC placing-scheduling optimization. Recent advances in generative AI and diffusion models have made it possible to generate high-quality images/videos and decision trajectories from language description. We formulate the SFC optimization as a problem of generating a state sequence for planning and perform graph diffusion on the state trajectories to enable extraction of SFC decisions, with SFC optimization constraints and objectives as conditions. To address the lack of demonstration data due to NP-hardness and exponential problem space of the SFC optimization, we also propose a novel and somewhat maverick approach -- Rather than solving instances of this difficult optimization, we start with randomly-generated solutions as input, and then determine appropriate SFC optimization problems that render these solutions feasible. This inverse demonstration enables us to obtain sufficient expert demonstrations, i.e., problem-solution pairs, through further optimization. In our numerical evaluations, the proposed network diffuser outperforms learning and heuristic baselines, by $\sim$20\% improvement in SFC reward and $\sim$50\% reduction in SFC waiting time and blocking rate.
Abstract:The alignment of large language models (LLMs) with human values is critical as these models become increasingly integrated into various societal and decision-making processes. Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters, but these approaches are often computationally expensive and impractical when models are frozen or inaccessible for parameter modification. In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment. While the existing literature has shown empirical promise of prompt optimization, its theoretical underpinning remains under-explored. We address this gap by formulating prompt optimization as an optimization problem and try to provide theoretical insights into the optimality of such a framework. To analyze the performance of the prompt optimization, we study theoretical suboptimality bounds and provide insights in terms of how prompt optimization depends upon the given prompter and target model. We also provide empirical validation through experiments on various datasets, demonstrating that prompt optimization can effectively align LLMs, even when parameter fine-tuning is not feasible.