Abstract:The rapid growth of data from edge devices has catalyzed the performance of machine learning algorithms. However, the data generated resides at client devices thus there are majorly two challenge faced by traditional machine learning paradigms - centralization of data for training and secondly for most the generated data the class labels are missing and there is very poor incentives to clients to manually label their data owing to high cost and lack of expertise. To overcome these issues, there have been initial attempts to handle unlabelled data in a privacy preserving distributed manner using unsupervised federated data clustering. The goal is partition the data available on clients into $k$ partitions (called clusters) without actual exchange of data. Most of the existing algorithms are highly dependent on data distribution patterns across clients or are computationally expensive. Furthermore, due to presence of skewed nature of data across clients in most of practical scenarios existing models might result in clients suffering high clustering cost making them reluctant to participate in federated process. To this, we are first to introduce the idea of personalization in federated clustering. The goal is achieve balance between achieving lower clustering cost and at same time achieving uniform cost across clients. We propose p-FClus that addresses these goal in a single round of communication between server and clients. We validate the efficacy of p-FClus against variety of federated datasets showcasing it's data independence nature, applicability to any finite $\ell$-norm, while simultaneously achieving lower cost and variance.
Abstract:Restless multi-armed bandits (RMABs) generalize the multi-armed bandits where each arm exhibits Markovian behavior and transitions according to their transition dynamics. Solutions to RMAB exist for both offline and online cases. However, they do not consider the distribution of pulls among the arms. Studies have shown that optimal policies lead to unfairness, where some arms are not exposed enough. Existing works in fairness in RMABs focus heavily on the offline case, which diminishes their application in real-world scenarios where the environment is largely unknown. In the online scenario, we propose the first fair RMAB framework, where each arm receives pulls in proportion to its merit. We define the merit of an arm as a function of its stationary reward distribution. We prove that our algorithm achieves sublinear fairness regret in the single pull case $O(\sqrt{T\ln T})$, with $T$ being the total number of episodes. Empirically, we show that our algorithm performs well in the multi-pull scenario as well.
Abstract:Existing approaches to fairness in stochastic multi-armed bandits (MAB) primarily focus on exposure guarantee to individual arms. When arms are naturally grouped by certain attribute(s), we propose Bi-Level Fairness, which considers two levels of fairness. At the first level, Bi-Level Fairness guarantees a certain minimum exposure to each group. To address the unbalanced allocation of pulls to individual arms within a group, we consider meritocratic fairness at the second level, which ensures that each arm is pulled according to its merit within the group. Our work shows that we can adapt a UCB-based algorithm to achieve a Bi-Level Fairness by providing (i) anytime Group Exposure Fairness guarantees and (ii) ensuring individual-level Meritocratic Fairness within each group. We first show that one can decompose regret bounds into two components: (a) regret due to anytime group exposure fairness and (b) regret due to meritocratic fairness within each group. Our proposed algorithm BF-UCB balances these two regrets optimally to achieve the upper bound of $O(\sqrt{T})$ on regret; $T$ being the stopping time. With the help of simulated experiments, we further show that BF-UCB achieves sub-linear regret; provides better group and individual exposure guarantees compared to existing algorithms; and does not result in a significant drop in reward with respect to UCB algorithm, which does not impose any fairness constraint.
Abstract:This paper considers the contextual multi-armed bandit (CMAB) problem with fairness and privacy guarantees in a federated environment. We consider merit-based exposure as the desired fair outcome, which provides exposure to each action in proportion to the reward associated. We model the algorithm's effectiveness using fairness regret, which captures the difference between fair optimal policy and the policy output by the algorithm. Applying fair CMAB algorithm to each agent individually leads to fairness regret linear in the number of agents. We propose that collaborative -- federated learning can be more effective and provide the algorithm Fed-FairX-LinUCB that also ensures differential privacy. The primary challenge in extending the existing privacy framework is designing the communication protocol for communicating required information across agents. A naive protocol can either lead to weaker privacy guarantees or higher regret. We design a novel communication protocol that allows for (i) Sub-linear theoretical bounds on fairness regret for Fed-FairX-LinUCB and comparable bounds for the private counterpart, Priv-FairX-LinUCB (relative to single-agent learning), (ii) Effective use of privacy budget in Priv-FairX-LinUCB. We demonstrate the efficacy of our proposed algorithm with extensive simulations-based experiments. We show that both Fed-FairX-LinUCB and Priv-FairX-LinUCB achieve near-optimal fairness regret.
Abstract:One of the widely used peak reduction methods in smart grids is demand response, where one analyzes the shift in customers' (agents') usage patterns in response to the signal from the distribution company. Often, these signals are in the form of incentives offered to agents. This work studies the effect of incentives on the probabilities of accepting such offers in a real-world smart grid simulator, PowerTAC. We first show that there exists a function that depicts the probability of an agent reducing its load as a function of the discounts offered to them. We call it reduction probability (RP). RP function is further parametrized by the rate of reduction (RR), which can differ for each agent. We provide an optimal algorithm, MJS--ExpResponse, that outputs the discounts to each agent by maximizing the expected reduction under a budget constraint. When RRs are unknown, we propose a Multi-Armed Bandit (MAB) based online algorithm, namely MJSUCB--ExpResponse, to learn RRs. Experimentally we show that it exhibits sublinear regret. Finally, we showcase the efficacy of the proposed algorithm in mitigating demand peaks in a real-world smart grid system using the PowerTAC simulator as a test bed.
Abstract:We consider a budgeted combinatorial multi-armed bandit setting where, in every round, the algorithm selects a super-arm consisting of one or more arms. The goal is to minimize the total expected regret after all rounds within a limited budget. Existing techniques in this literature either fix the budget per round or fix the number of arms pulled in each round. Our setting is more general where based on the remaining budget and remaining number of rounds, the algorithm can decide how many arms to be pulled in each round. First, we propose CBwK-Greedy-UCB algorithm, which uses a greedy technique, CBwK-Greedy, to allocate the arms to the rounds. Next, we propose a reduction of this problem to Bandits with Knapsacks (BwK) with a single pull. With this reduction, we propose CBwK-LPUCB that uses PrimalDualBwK ingeniously. We rigorously prove regret bounds for CBwK-LP-UCB. We experimentally compare the two algorithms and observe that CBwK-Greedy-UCB performs incrementally better than CBwK-LP-UCB. We also show that for very high budgets, the regret goes to zero.
Abstract:Recommender systems are indispensable because they influence our day-to-day behavior and decisions by giving us personalized suggestions. Services like Kindle, Youtube, and Netflix depend heavily on the performance of their recommender systems to ensure that their users have a good experience and to increase revenues. Despite their popularity, it has been shown that recommender systems reproduce and amplify the bias present in the real world. The resulting feedback creates a self-perpetuating loop that deteriorates the user experience and results in homogenizing recommendations over time. Further, biased recommendations can also reinforce stereotypes based on gender or ethnicity, thus reinforcing the filter bubbles that we live in. In this paper, we address the problem of gender bias in recommender systems with explicit feedback. We propose a model to quantify the gender bias present in book rating datasets and in the recommendations produced by the recommender systems. Our main contribution is to provide a principled approach to mitigate the bias being produced in the recommendations. We theoretically show that the proposed approach provides unbiased recommendations despite biased data. Through empirical evaluation on publicly available book rating datasets, we further show that the proposed model can significantly reduce bias without significant impact on accuracy. Our method is model agnostic and can be applied to any recommender system. To demonstrate the performance of our model, we present the results on four recommender algorithms, two from the K-nearest neighbors family, UserKNN and ItemKNN, and the other two from the matrix factorization family, Alternating least square and Singular value decomposition.
Abstract:This work focuses on an efficient Agile design methodology for domain-specific accelerators. We employ feature-by-feature enhancement of a vertical development stack and apply it to the TVM/VTA inference accelerator. We have enhanced the VTA design space and enabled end-to-end support for additional workloads. This has been accomplished by augmenting the VTA micro-architecture and instruction set architecture (ISA), as well as by enhancing the TVM compilation stack to support a wide range of VTA configs. The VTA tsim implementation (CHISEL-based) has been enhanced with fully pipelined versions of the ALU/GEMM execution units. In tsim, memory width can now range between 8-64 bytes. Field widths have been made more flexible to support larger scratchpads. New instructions have been added: element-wise 8-bit multiplication to support depthwise convolution, and load with a choice of pad values to support max pooling. Support for more layers and better double buffering has also been added. Fully pipelining ALU/GEMM helps significantly: 4.9x fewer cycles with minimal area change to run ResNet-18 under the default config. Configs featuring a further 11.5x decrease in cycle count at a cost of 12x greater area can be instantiated. Many points on the area-performance pareto curve are shown, showcasing the balance of execution unit sizing, memory interface width, and scratchpad sizing. Finally, VTA is now able to run Mobilenet 1.0 and all layers for ResNets, including the previously disabled pooling and fully connected layers. The TVM/VTA architecture has always featured end-to-end workload evaluation on RTL in minutes. With our modifications, it now offers a much greater number of feasible configurations with a wide range of cost vs. performance. All capabilities mentioned are available in opensource forks while a subset of these capabilities have already been upstreamed.
Abstract:The observed ratings in most recommender systems are subjected to popularity bias and are thus not randomly missing. Due to this, only a few popular items are recommended, and a vast number of non-popular items are hardly recommended. Not suggesting the non-popular items lead to fewer products dominating the market and thus offering fewer opportunities for creativity and innovation. In the literature, several fair algorithms have been proposed which mainly focused on improving the accuracy of the recommendation system. However, a typical accuracy measure is biased towards popular items, i.e., it promotes better accuracy for popular items compared to non-popular items. This paper considers a metric that measures the popularity bias as the difference in error on popular items and non-popular items. Motivated by the fair boosting algorithm on classification, we propose an algorithm that reduces the popularity bias present in the data while maintaining accuracy within acceptable limits. The main idea of our algorithm is that it lifts the weights of the non-popular items, which are generally underrepresented in the data. With the help of comprehensive experiments on real-world datasets, we show that our proposed algorithm outperforms the existing algorithms on the proposed popularity bias metric.
Abstract:We revisit the problem of fair clustering, first introduced by Chierichetti et al., that requires each protected attribute to have approximately equal representation in every cluster; i.e., a balance property. Existing solutions to fair clustering are either not scalable or do not achieve an optimal trade-off between clustering objective and fairness. In this paper, we propose a new notion of fairness, which we call $tau$-fair fairness, that strictly generalizes the balance property and enables a fine-grained efficiency vs. fairness trade-off. Furthermore, we show that simple greedy round-robin based algorithms achieve this trade-off efficiently. Under a more general setting of multi-valued protected attributes, we rigorously analyze the theoretical properties of the our algorithms. Our experimental results suggest that the proposed solution outperforms all the state-of-the-art algorithms and works exceptionally well even for a large number of clusters.