INRIA Lille - Nord Europe
Abstract:Conservative Contextual Bandits (CCBs) address safety in sequential decision making by requiring that an agent's policy, along with minimizing regret, also satisfies a safety constraint: the performance is not worse than a baseline policy (e.g., the policy that the company has in production) by more than $(1+\alpha)$ factor. Prior work developed UCB-style algorithms in the multi-armed [Wu et al., 2016] and contextual linear [Kazerouni et al., 2017] settings. However, in practice the cost of the arms is often a non-linear function, and therefore existing UCB algorithms are ineffective in such settings. In this paper, we consider CCBs beyond the linear case and develop two algorithms $\mathtt{C-SquareCB}$ and $\mathtt{C-FastCB}$, using Inverse Gap Weighting (IGW) based exploration and an online regression oracle. We show that the safety constraint is satisfied with high probability and that the regret of $\mathtt{C-SquareCB}$ is sub-linear in horizon $T$, while the regret of $\mathtt{C-FastCB}$ is first-order and is sub-linear in $L^*$, the cumulative loss of the optimal policy. Subsequently, we use a neural network for function approximation and online gradient descent as the regression oracle to provide $\tilde{O}(\sqrt{KT} + K/\alpha) $ and $\tilde{O}(\sqrt{KL^*} + K (1 + 1/\alpha))$ regret bounds, respectively. Finally, we demonstrate the efficacy of our algorithms on real-world data and show that they significantly outperform the existing baseline while maintaining the performance guarantee.
Abstract:In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes. This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees. The algorithm leverages a new, simple dynamic program (DP) decomposition for quantile MDPs. Compared with prior work, our DP decomposition requires neither known transition probabilities nor solving complex saddle point equations and serves as a suitable foundation for other model-free RL algorithms. Our numerical results in tabular domains show that our Q-learning algorithm converges to its DP variant and outperforms earlier algorithms.
Abstract:Fine-tuning text-to-image models with reward functions trained on human feedback data has proven effective for aligning model behavior with human intent. However, excessive optimization with such reward models, which serve as mere proxy objectives, can compromise the performance of fine-tuned models, a phenomenon known as reward overoptimization. To investigate this issue in depth, we introduce the Text-Image Alignment Assessment (TIA2) benchmark, which comprises a diverse collection of text prompts, images, and human annotations. Our evaluation of several state-of-the-art reward models on this benchmark reveals their frequent misalignment with human assessment. We empirically demonstrate that overoptimization occurs notably when a poorly aligned reward model is used as the fine-tuning objective. To address this, we propose TextNorm, a simple method that enhances alignment based on a measure of reward model confidence estimated across a set of semantically contrastive text prompts. We demonstrate that incorporating the confidence-calibrated rewards in fine-tuning effectively reduces overoptimization, resulting in twice as many wins in human evaluation for text-image alignment compared against the baseline reward models.
Abstract:We study contextual bandits in the presence of a stage-wise constraint (a constraint at each round), when the constraint must be satisfied both with high probability and in expectation. Obviously the setting where the constraint is in expectation is a relaxation of the one with high probability. We start with the linear case where both the contextual bandit problem (reward function) and the stage-wise constraint (cost function) are linear. In each of the high probability and in expectation settings, we propose an upper-confidence bound algorithm for the problem and prove a $T$-round regret bound for it. Our algorithms balance exploration and constraint satisfaction using a novel idea that scales the radii of the reward and cost confidence sets with different scaling factors. We also prove a lower-bound for this constrained problem, show how our algorithms and analyses can be extended to multiple constraints, and provide simulations to validate our theoretical results. In the high probability setting, we describe the minimum requirements for the action set in order for our algorithm to be tractable. In the setting that the constraint is in expectation, we further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting with regret analysis. Finally, we extend our results to the case where the reward and cost functions are both non-linear. We propose an algorithm for this case and prove a regret bound for it that characterize the function class complexity by the eluder dimension.
Abstract:We propose and theoretically analyze an approach for planning with an approximate model in reinforcement learning that can reduce the adverse impact of model error. If the model is accurate enough, it accelerates the convergence to the true value function too. One of its key components is the MaxEnt Model Correction (MoCo) procedure that corrects the model's next-state distributions based on a Maximum Entropy density estimation formulation. Based on MoCo, we introduce the Model Correcting Value Iteration (MoCoVI) algorithm, and its sampled-based variant MoCoDyna. We show that MoCoVI and MoCoDyna's convergence can be much faster than the conventional model-free algorithms. Unlike traditional model-based algorithms, MoCoVI and MoCoDyna effectively utilize an approximate model and still converge to the correct value function.
Abstract:The goal of an offline reinforcement learning (RL) algorithm is to learn optimal polices using historical (offline) data, without access to the environment for online exploration. One of the main challenges in offline RL is the distribution shift which refers to the difference between the state-action visitation distribution of the data generating policy and the learning policy. Many recent works have used the idea of pessimism for developing offline RL algorithms and characterizing their sample complexity under a relatively weak assumption of single policy concentrability. Different from the offline RL literature, the area of distributionally robust learning (DRL) offers a principled framework that uses a minimax formulation to tackle model mismatch between training and testing environments. In this work, we aim to bridge these two areas by showing that the DRL approach can be used to tackle the distributional shift problem in offline RL. In particular, we propose two offline RL algorithms using the DRL framework, for the tabular and linear function approximation settings, and characterize their sample complexity under the single policy concentrability assumption. We also demonstrate the superior performance our proposed algorithm through simulation experiments.
Abstract:Preference elicitation plays a central role in interactive recommender systems. Most preference elicitation approaches use either item queries that ask users to select preferred items from a slate, or attribute queries that ask them to express their preferences for item characteristics. Unfortunately, users often wish to describe their preferences using soft attributes for which no ground-truth semantics is given. Leveraging concept activation vectors for soft attribute semantics, we develop novel preference elicitation methods that can accommodate soft attributes and bring together both item and attribute-based preference elicitation. Our techniques query users using both items and soft attributes to update the recommender system's belief about their preferences to improve recommendation quality. We demonstrate the effectiveness of our methods vis-a-vis competing approaches on both synthetic and real-world datasets.
Abstract:Recommender systems (RSs) play a central role in connecting users to content, products, and services, matching candidate items to users based on their preferences. While traditional RSs rely on implicit user feedback signals, conversational RSs interact with users in natural language. In this work, we develop a comPelling, Precise, Personalized, Preference-relevant language model (P4LM) that recommends items to users while putting emphasis on explaining item characteristics and their relevance. P4LM uses the embedding space representation of a user's preferences to generate compelling responses that are factually-grounded and relevant w.r.t. the user's preferences. Moreover, we develop a joint reward function that measures precision, appeal, and personalization, which we use as AI-based feedback in a reinforcement learning-based language model framework. Using the MovieLens 25M dataset, we demonstrate that P4LM delivers compelling, personalized movie narratives to users.
Abstract:Algorithms for offline bandits must optimize decisions in uncertain environments using only offline data. A compelling and increasingly popular objective in offline bandits is to learn a policy which achieves low Bayesian regret with high confidence. An appealing approach to this problem, inspired by recent offline reinforcement learning results, is to maximize a form of lower confidence bound (LCB). This paper proposes a new approach that directly minimizes upper bounds on Bayesian regret using efficient conic optimization solvers. Our bounds build on connections among Bayesian regret, Value-at-Risk (VaR), and chance-constrained optimization. Compared to prior work, our algorithm attains superior theoretical offline regret bounds and better results in numerical simulations. Finally, we provide some evidence that popular LCB-style algorithms may be unsuitable for minimizing Bayesian regret in offline bandits.
Abstract:Learning from human feedback has been shown to improve text-to-image models. These techniques first learn a reward function that captures what humans care about in the task and then improve the models based on the learned reward function. Even though relatively simple approaches (e.g., rejection sampling based on reward scores) have been investigated, fine-tuning text-to-image models with the reward function remains challenging. In this work, we propose using online reinforcement learning (RL) to fine-tune text-to-image models. We focus on diffusion models, defining the fine-tuning task as an RL problem, and updating the pre-trained text-to-image diffusion models using policy gradient to maximize the feedback-trained reward. Our approach, coined DPOK, integrates policy optimization with KL regularization. We conduct an analysis of KL regularization for both RL fine-tuning and supervised fine-tuning. In our experiments, we show that DPOK is generally superior to supervised fine-tuning with respect to both image-text alignment and image quality.