Abstract:Real-time 2D keypoint detection plays an essential role in computer vision. Although CNN-based and Transformer-based methods have achieved breakthrough progress, they often fail to deliver superior performance and real-time speed. This paper introduces MamKPD, the first efficient yet effective mamba-based pose estimation framework for 2D keypoint detection. The conventional Mamba module exhibits limited information interaction between patches. To address this, we propose a lightweight contextual modeling module (CMM) that uses depth-wise convolutions to model inter-patch dependencies and linear layers to distill the pose cues within each patch. Subsequently, by combining Mamba for global modeling across all patches, MamKPD effectively extracts instances' pose information. We conduct extensive experiments on human and animal pose estimation datasets to validate the effectiveness of MamKPD. Our MamKPD-L achieves 77.3% AP on the COCO dataset with 1492 FPS on an NVIDIA GTX 4090 GPU. Moreover, MamKPD achieves state-of-the-art results on the MPII dataset and competitive results on the AP-10K dataset while saving 85% of the parameters compared to ViTPose. Our project page is available at https://mamkpd.github.io/.
Abstract:The deployment of embodied navigation agents in safety-critical environments raises concerns about their vulnerability to adversarial attacks on deep neural networks. However, current attack methods often lack practicality due to challenges in transitioning from the digital to the physical world, while existing physical attacks for object detection fail to achieve both multi-view effectiveness and naturalness. To address this, we propose a practical attack method for embodied navigation by attaching adversarial patches with learnable textures and opacity to objects. Specifically, to ensure effectiveness across varying viewpoints, we employ a multi-view optimization strategy based on object-aware sampling, which uses feedback from the navigation model to optimize the patch's texture. To make the patch inconspicuous to human observers, we introduce a two-stage opacity optimization mechanism, where opacity is refined after texture optimization. Experimental results show our adversarial patches reduce navigation success rates by about 40%, outperforming previous methods in practicality, effectiveness, and naturalness. Code is available at: [https://github.com/chen37058/Physical-Attacks-in-Embodied-Navigation].
Abstract:Previous methods usually only extract the image modality's information to recognize group activity. However, mining image information is approaching saturation, making it difficult to extract richer information. Therefore, extracting complementary information from other modalities to supplement image information has become increasingly important. In fact, action labels provide clear text information to express the action's semantics, which existing methods often overlook. Thus, we propose ActivityCLIP, a plug-and-play method for mining the text information contained in the action labels to supplement the image information for enhancing group activity recognition. ActivityCLIP consists of text and image branches, where the text branch is plugged into the image branch (The off-the-shelf image-based method). The text branch includes Image2Text and relation modeling modules. Specifically, we propose the knowledge transfer module, Image2Text, which adapts image information into text information extracted by CLIP via knowledge distillation. Further, to keep our method convenient, we add fewer trainable parameters based on the relation module of the image branch to model interaction relation in the text branch. To show our method's generality, we replicate three representative methods by ActivityCLIP, which adds only limited trainable parameters, achieving favorable performance improvements for each method. We also conduct extensive ablation studies and compare our method with state-of-the-art methods to demonstrate the effectiveness of ActivityCLIP.
Abstract:Micro-expressions are nonverbal facial expressions that reveal the covert emotions of individuals, making the micro-expression recognition task receive widespread attention. However, the micro-expression recognition task is challenging due to the subtle facial motion and brevity in duration. Many 2D image-based methods have been developed in recent years to recognize MEs effectively, but, these approaches are restricted by facial texture information and are susceptible to environmental factors, such as lighting. Conversely, depth information can effectively represent motion information related to facial structure changes and is not affected by lighting. Motion information derived from facial structures can describe motion features that pixel textures cannot delineate. We proposed a network for micro-expression recognition based on facial depth information, and our experiments have demonstrated the crucial role of depth maps in the micro-expression recognition task. Initially, we transform the depth map into a point cloud and obtain the motion information for each point by aligning the initiating frame with the apex frame and performing a differential operation. Subsequently, we adjusted all point cloud motion feature input dimensions and used them as inputs for multiple point cloud networks to assess the efficacy of this representation. PointNet++ was chosen as the ultimate outcome for micro-expression recognition due to its superior performance. Our experiments show that our proposed method significantly outperforms the existing deep learning methods, including the baseline, on the $CAS(ME)^3$ dataset, which includes depth information.
Abstract:Multi-person pose estimation (MPPE) presents a formidable yet crucial challenge in computer vision. Most existing methods predominantly concentrate on isolated interaction either between instances or joints, which is inadequate for scenarios demanding concurrent localization of both instances and joints. This paper introduces a novel CNN-based single-stage method, named Dual-path Hierarchical Relation Network (DHRNet), to extract instance-to-joint and joint-to-instance interactions concurrently. Specifically, we design a dual-path interaction modeling module (DIM) that strategically organizes cross-instance and cross-joint interaction modeling modules in two complementary orders, enriching interaction information by integrating merits from different correlation modeling branches. Notably, DHRNet excels in joint localization by leveraging information from other instances and joints. Extensive evaluations on challenging datasets, including COCO, CrowdPose, and OCHuman datasets, showcase DHRNet's state-of-the-art performance. The code will be released at https://github.com/YHDang/dhrnet-multi-pose-estimation.
Abstract:Recently, 2D convolution has been found unqualified in sound event detection (SED). It enforces translation equivariance on sound events along frequency axis, which is not a shift-invariant dimension. To address this issue, dynamic convolution is used to model the frequency dependency of sound events. In this paper, we proposed the first full-dynamic method named \emph{full-frequency dynamic convolution} (FFDConv). FFDConv generates frequency kernels for every frequency band, which is designed directly in the structure for frequency-dependent modeling. It physically furnished 2D convolution with the capability of frequency-dependent modeling. FFDConv outperforms not only the baseline by 6.6\% in DESED real validation dataset in terms of PSDS1, but outperforms the other full-dynamic methods. In addition, by visualizing features of sound events, we observed that FFDConv could effectively extract coherent features in specific frequency bands, consistent with the vocal continuity of sound events. This proves that FFDConv has great frequency-dependent perception ability.
Abstract:Skeleton-based action recognition is a central task of human-computer interaction. However, most of the previous methods suffer from two issues: (i) semantic ambiguity arising from spatiotemporal information mixture; and (ii) overlooking the explicit exploitation of the latent data distributions (i.e., the intra-class variations and inter-class relations), thereby leading to local optimum solutions of the skeleton encoders. To mitigate this, we propose a spatial-temporal decoupling contrastive learning (STD-CL) framework to obtain discriminative and semantically distinct representations from the sequences, which can be incorporated into almost all previous skeleton encoders and have no impact on the skeleton encoders when testing. Specifically, we decouple the global features into spatial-specific and temporal-specific features to reduce the spatiotemporal coupling of features. Furthermore, to explicitly exploit the latent data distributions, we employ the attentive features to contrastive learning, which models the cross-sequence semantic relations by pulling together the features from the positive pairs and pushing away the negative pairs. Extensive experiments show that STD-CL with four various skeleton encoders (HCN, 2S-AGCN, CTR-GCN, and Hyperformer) achieves solid improvement on NTU60, NTU120, and NW-UCLA benchmarks. The code will be released.
Abstract:Human Pose Estimation (HPE) plays a crucial role in computer vision applications. However, it is difficult to deploy state-of-the-art models on resouce-limited devices due to the high computational costs of the networks. In this work, a binary human pose estimator named BiHRNet(Binary HRNet) is proposed, whose weights and activations are expressed as $\pm$1. BiHRNet retains the keypoint extraction ability of HRNet, while using fewer computing resources by adapting binary neural network (BNN). In order to reduce the accuracy drop caused by network binarization, two categories of techniques are proposed in this work. For optimizing the training process for binary pose estimator, we propose a new loss function combining KL divergence loss with AWing loss, which makes the binary network obtain more comprehensive output distribution from its real-valued counterpart to reduce information loss caused by binarization. For designing more binarization-friendly structures, we propose a new information reconstruction bottleneck called IR Bottleneck to retain more information in the initial stage of the network. In addition, we also propose a multi-scale basic block called MS-Block for information retention. Our work has less computation cost with few precision drop. Experimental results demonstrate that BiHRNet achieves a PCKh of 87.9 on the MPII dataset, which outperforms all binary pose estimation networks. On the challenging of COCO dataset, the proposed method enables the binary neural network to achieve 70.8 mAP, which is better than most tested lightweight full-precision networks.
Abstract:Graph convolution networks (GCNs) have achieved remarkable performance in skeleton-based action recognition. However, existing previous GCN-based methods have relied excessively on elaborate human body priors and constructed complex feature aggregation mechanisms, which limits the generalizability of networks. To solve these problems, we propose a novel Spatial Topology Gating Unit (STGU), which is an MLP-based variant without extra priors, to capture the co-occurrence topology features that encode the spatial dependency across all joints. In STGU, to model the sample-specific and completely independent point-wise topology attention, a new gate-based feature interaction mechanism is introduced to activate the features point-to-point by the attention map generated from the input. Based on the STGU, in this work, we propose the first topology-aware MLP-based model, Ta-MLP, for skeleton-based action recognition. In comparison with existing previous methods on three large-scale datasets, Ta-MLP achieves competitive performance. In addition, Ta-MLP reduces the parameters by up to 62.5% with favorable results. Compared with previous state-of-the-art (SOAT) approaches, Ta-MLP pushes the frontier of real-time action recognition. The code will be available at https://github.com/BUPTSJZhang/Ta-MLP.
Abstract:Human motion prediction has achieved a brilliant performance with the help of CNNs, which facilitates human-machine cooperation. However, currently, there is no work evaluating the potential risk in human motion prediction when facing adversarial attacks, which may cause danger in real applications. The adversarial attack will face two problems against human motion prediction: 1. For naturalness, pose data is highly related to the physical dynamics of human skeletons where Lp norm constraints cannot constrain the adversarial example well; 2. Unlike the pixel value in images, pose data is diverse at scale because of the different acquisition equipment and the data processing, which makes it hard to set fixed parameters to perform attacks. To solve the problems above, we propose a new adversarial attack method that perturbs the input human motion sequence by maximizing the prediction error with physical constraints. Specifically, we introduce a novel adaptable scheme that facilitates the attack to suit the scale of the target pose and two physical constraints to enhance the imperceptibility of the adversarial example. The evaluating experiments on three datasets show that the prediction errors of all target models are enlarged significantly, which means current convolution-based human motion prediction models can be easily disturbed under the proposed attack. The quantitative analysis shows that prior knowledge and semantic information modeling can be the key to the adversarial robustness of human motion predictors. The qualitative results indicate that the adversarial sample is hard to be noticed when compared frame by frame but is relatively easy to be detected when the sample is animated.