Abstract:In this work, we investigate the effect of language models (LMs) with different context lengths and label units (phoneme vs. word) used in sequence discriminative training for phoneme-based neural transducers. Both lattice-free and N-best-list approaches are examined. For lattice-free methods with phoneme-level LMs, we propose a method to approximate the context history to employ LMs with full-context dependency. This approximation can be extended to arbitrary context length and enables the usage of word-level LMs in lattice-free methods. Moreover, a systematic comparison is conducted across lattice-free and N-best-list-based methods. Experimental results on Librispeech show that using the word-level LM in training outperforms the phoneme-level LM. Besides, we find that the context size of the LM used for probability computation has a limited effect on performance. Moreover, our results reveal the pivotal importance of the hypothesis space quality in sequence discriminative training.
Abstract:Internal language model (ILM) subtraction has been widely applied to improve the performance of the RNN-Transducer with external language model (LM) fusion for speech recognition. In this work, we show that sequence discriminative training has a strong correlation with ILM subtraction from both theoretical and empirical points of view. Theoretically, we derive that the global optimum of maximum mutual information (MMI) training shares a similar formula as ILM subtraction. Empirically, we show that ILM subtraction and sequence discriminative training achieve similar performance across a wide range of experiments on Librispeech, including both MMI and minimum Bayes risk (MBR) criteria, as well as neural transducers and LMs of both full and limited context. The benefit of ILM subtraction also becomes much smaller after sequence discriminative training. We also provide an in-depth study to show that sequence discriminative training has a minimal effect on the commonly used zero-encoder ILM estimation, but a joint effect on both encoder and prediction + joint network for posterior probability reshaping including both ILM and blank suppression.
Abstract:In this paper, we present our solution to the Multilingual Information Retrieval Across a Continuum of Languages (MIRACL) challenge of WSDM CUP 2023\footnote{https://project-miracl.github.io/}. Our solution focuses on enhancing the ranking stage, where we fine-tune pre-trained multilingual transformer-based models with MIRACL dataset. Our model improvement is mainly achieved through diverse data engineering techniques, including the collection of additional relevant training data, data augmentation, and negative sampling. Our fine-tuned model effectively determines the semantic relevance between queries and documents, resulting in a significant improvement in the efficiency of the multilingual information retrieval process. Finally, Our team is pleased to achieve remarkable results in this challenging competition, securing 2nd place in the Surprise-Languages track with a score of 0.835 and 3rd place in the Known-Languages track with an average nDCG@10 score of 0.716 across the 16 known languages on the final leaderboard.
Abstract:Recently, RNN-Transducers have achieved remarkable results on various automatic speech recognition tasks. However, lattice-free sequence discriminative training methods, which obtain superior performance in hybrid modes, are rarely investigated in RNN-Transducers. In this work, we propose three lattice-free training objectives, namely lattice-free maximum mutual information, lattice-free segment-level minimum Bayes risk, and lattice-free minimum Bayes risk, which are used for the final posterior output of the phoneme-based neural transducer with a limited context dependency. Compared to criteria using N-best lists, lattice-free methods eliminate the decoding step for hypotheses generation during training, which leads to more efficient training. Experimental results show that lattice-free methods gain up to 6.5% relative improvement in word error rate compared to a sequence-level cross-entropy trained model. Compared to the N-best-list based minimum Bayes risk objectives, lattice-free methods gain 40% - 70% relative training time speedup with a small degradation in performance.
Abstract:Language barriers present a great challenge in our increasingly connected and global world. Especially within the medical domain, e.g. hospital or emergency room, communication difficulties and delays may lead to malpractice and non-optimal patient care. In the HYKIST project, we consider patient-physician communication, more specifically between a German-speaking physician and an Arabic- or Vietnamese-speaking patient. Currently, a doctor can call the Triaphon service to get assistance from an interpreter in order to help facilitate communication. The HYKIST goal is to support the usually non-professional bilingual interpreter with an automatic speech translation system to improve patient care and help overcome language barriers. In this work, we present our ASR system development efforts for this conversational telephone speech translation task in the medical domain for two languages pairs, data collection, various acoustic model architectures and dialect-induced difficulties.
Abstract:This paper mainly describes our winning solution (team name: www) to Amazon ESCI Challenge of KDD CUP 2022, which achieves a NDCG score of 0.9043 and wins the first place on task 1: the query-product ranking track. In this competition, participants are provided with a real-world large-scale multilingual shopping queries data set and it contains query-product pairs in English, Japanese and Spanish. Three different tasks are proposed in this competition, including ranking the results list as task 1, classifying the query/product pairs into Exact, Substitute, Complement, or Irrelevant (ESCI) categories as task 2 and identifying substitute products for a given query as task 3. We mainly focus on task 1 and propose a semantic alignment system for multilingual query-product retrieval. Pre-trained multilingual language models (LM) are adopted to get the semantic representation of queries and products. Our models are all trained with cross-entropy loss to classify the query-product pairs into ESCI 4 categories at first, and then we use weighted sum with the 4-class probabilities to get the score for ranking. To further boost the model, we also do elaborative data preprocessing, data augmentation by translation, specially handling English texts with English LMs, adversarial training with AWP and FGM, self distillation, pseudo labeling, label smoothing and ensemble. Finally, Our solution outperforms others both on public and private leaderboard.
Abstract:The Cross-Market Recommendation task of WSDM CUP 2022 is about finding solutions to improve individual recommendation systems in resource-scarce target markets by leveraging data from similar high-resource source markets. Finally, our team OPDAI won the first place with NDCG@10 score of 0.6773 on the leaderboard. Our solution to this task will be detailed in this paper. To better transform information from source markets to target markets, we adopt two stages of ranking. In pre-ranking stage, we adopt diverse pre-ranking methods or models to do feature generation. After elaborate feature analysis and feature selection, we train LightGBM with 10-fold bagging to do the final ranking.
Abstract:To mitigate the problem of having to traverse over the full vocabulary in the softmax normalization of a neural language model, sampling-based training criteria are proposed and investigated in the context of large vocabulary word-based neural language models. These training criteria typically enjoy the benefit of faster training and testing, at a cost of slightly degraded performance in terms of perplexity and almost no visible drop in word error rate. While noise contrastive estimation is one of the most popular choices, recently we show that other sampling-based criteria can also perform well, as long as an extra correction step is done, where the intended class posterior probability is recovered from the raw model outputs. In this work, we propose self-normalized importance sampling. Compared to our previous work, the criteria considered in this work are self-normalized and there is no need to further conduct a correction step. Compared to noise contrastive estimation, our method is directly comparable in terms of complexity in application. Through self-normalized language model training as well as lattice rescoring experiments, we show that our proposed self-normalized importance sampling is competitive in both research-oriented and production-oriented automatic speech recognition tasks.