Abstract:To address the issue of feature descriptors being ineffective in representing grayscale feature information when images undergo high affine transformations, leading to a rapid decline in feature matching accuracy, this paper proposes a region feature descriptor based on simulating affine transformations using classification. The proposed method initially categorizes images with different affine degrees to simulate affine transformations and generate a new set of images. Subsequently, it calculates neighborhood information for feature points on this new image set. Finally, the descriptor is generated by combining the grayscale histogram of the maximum stable extremal region to which the feature point belongs and the normalized position relative to the grayscale centroid of the feature point's region. Experimental results, comparing feature matching metrics under affine transformation scenarios, demonstrate that the proposed descriptor exhibits higher precision and robustness compared to existing classical descriptors. Additionally, it shows robustness when integrated with other descriptors.
Abstract:To address the issue of increased triangulation uncertainty caused by selecting views with small camera baselines in Structure from Motion (SFM) view selection, this paper proposes a robust error-resistant view selection method. The method utilizes a triangulation-based computation to obtain an error-resistant model, which is then used to construct an error-resistant matrix. The sorting results of each row in the error-resistant matrix determine the candidate view set for each view. By traversing the candidate view sets of all views and completing the missing views based on the error-resistant matrix, the integrity of 3D reconstruction is ensured. Experimental comparisons between this method and the exhaustive method with the highest accuracy in the COLMAP program are conducted in terms of average reprojection error and absolute trajectory error in the reconstruction results. The proposed method demonstrates an average reduction of 29.40% in reprojection error accuracy and 5.07% in absolute trajectory error on the TUM dataset and DTU dataset.
Abstract:The images captured by Wireless Capsule Endoscopy (WCE) always exhibit specular reflections, and removing highlights while preserving the color and texture in the region remains a challenge. To address this issue, this paper proposes a highlight removal method for capsule endoscopy images. Firstly, the confidence and feature terms of the highlight region's edges are computed, where confidence is obtained by the ratio of known pixels in the RGB space's R channel to the B channel within a window centered on the highlight region's edge pixel, and feature terms are acquired by multiplying the gradient vector of the highlight region's edge pixel with the iso-intensity line. Subsequently, the confidence and feature terms are assigned different weights and summed to obtain the priority of all highlight region's edge pixels, and the pixel with the highest priority is identified. Then, the variance of the highlight region's edge pixels is used to adjust the size of the sample block window, and the best-matching block is searched in the known region based on the RGB color similarity and distance between the sample block and the window centered on the pixel with the highest priority. Finally, the pixels in the best-matching block are copied to the highest priority highlight removal region to achieve the goal of removing the highlight region. Experimental results demonstrate that the proposed method effectively removes highlights from WCE images, with a lower coefficient of variation in the highlight removal region compared to the Crinimisi algorithm and DeepGin method. Additionally, the color and texture in the highlight removal region are similar to those in the surrounding areas, and the texture is continuous.
Abstract:In Visual SLAM, achieving accurate feature matching consumes a significant amount of time, severely impacting the real-time performance of the system. This paper proposes an accelerated method for Visual SLAM by integrating GMS (Grid-based Motion Statistics) with RANSAC (Random Sample Consensus) for the removal of mismatched features. The approach first utilizes the GMS algorithm to estimate the quantity of matched pairs within the neighborhood and ranks the matches based on their confidence. Subsequently, the Random Sample Consensus (RANSAC) algorithm is employed to further eliminate mismatched features. To address the time-consuming issue of randomly selecting all matched pairs, this method transforms it into the problem of prioritizing sample selection from high-confidence matches. This enables the iterative solution of the optimal model. Experimental results demonstrate that the proposed method achieves a comparable accuracy to the original GMS-RANSAC while reducing the average runtime by 24.13% on the KITTI, TUM desk, and TUM doll datasets.
Abstract:Feature matching is a fundamental and crucial process in visual SLAM, and precision has always been a challenging issue in feature matching. In this paper, based on a multi-level fine matching strategy, we propose a new feature matching method called KTGP-ORB. This method utilizes the similarity of local appearance in the Hamming space generated by feature descriptors to establish initial correspondences. It combines the constraint of local image motion smoothness, uses the GMS algorithm to enhance the accuracy of initial matches, and finally employs the PROSAC algorithm to optimize matches, achieving precise matching based on global grayscale information in Euclidean space. Experimental results demonstrate that the KTGP-ORB method reduces the error by an average of 29.92% compared to the ORB algorithm in complex scenes with illumination variations and blur.
Abstract:This paper presents, for the first time, an image enhancement methodology designed to enhance the clarity of small intestinal villi in Wireless Capsule Endoscopy (WCE) images. This method first separates the low-frequency and high-frequency components of small intestinal villi images using guided filtering. Subsequently, an adaptive light gain factor is generated based on the low-frequency component, and an adaptive gradient gain factor is derived from the convolution results of the Laplacian operator in different regions of small intestinal villi images. The obtained light gain factor and gradient gain factor are then combined to enhance the high-frequency components. Finally, the enhanced high-frequency component is fused with the original image to achieve adaptive sharpening of the edges of WCE small intestinal villi images. The experiments affirm that, compared to established WCE image enhancement methods, our approach not only accentuates the edge details of WCE small intestine villi images but also skillfully suppresses noise amplification, thereby preventing the occurrence of edge overshooting.
Abstract:Skeleton-based action recognition is a central task of human-computer interaction. However, most of the previous methods suffer from two issues: (i) semantic ambiguity arising from spatiotemporal information mixture; and (ii) overlooking the explicit exploitation of the latent data distributions (i.e., the intra-class variations and inter-class relations), thereby leading to local optimum solutions of the skeleton encoders. To mitigate this, we propose a spatial-temporal decoupling contrastive learning (STD-CL) framework to obtain discriminative and semantically distinct representations from the sequences, which can be incorporated into almost all previous skeleton encoders and have no impact on the skeleton encoders when testing. Specifically, we decouple the global features into spatial-specific and temporal-specific features to reduce the spatiotemporal coupling of features. Furthermore, to explicitly exploit the latent data distributions, we employ the attentive features to contrastive learning, which models the cross-sequence semantic relations by pulling together the features from the positive pairs and pushing away the negative pairs. Extensive experiments show that STD-CL with four various skeleton encoders (HCN, 2S-AGCN, CTR-GCN, and Hyperformer) achieves solid improvement on NTU60, NTU120, and NW-UCLA benchmarks. The code will be released.
Abstract:Graph convolution networks (GCNs) have achieved remarkable performance in skeleton-based action recognition. However, existing previous GCN-based methods have relied excessively on elaborate human body priors and constructed complex feature aggregation mechanisms, which limits the generalizability of networks. To solve these problems, we propose a novel Spatial Topology Gating Unit (STGU), which is an MLP-based variant without extra priors, to capture the co-occurrence topology features that encode the spatial dependency across all joints. In STGU, to model the sample-specific and completely independent point-wise topology attention, a new gate-based feature interaction mechanism is introduced to activate the features point-to-point by the attention map generated from the input. Based on the STGU, in this work, we propose the first topology-aware MLP-based model, Ta-MLP, for skeleton-based action recognition. In comparison with existing previous methods on three large-scale datasets, Ta-MLP achieves competitive performance. In addition, Ta-MLP reduces the parameters by up to 62.5% with favorable results. Compared with previous state-of-the-art (SOAT) approaches, Ta-MLP pushes the frontier of real-time action recognition. The code will be available at https://github.com/BUPTSJZhang/Ta-MLP.
Abstract:This technical report describes our first-place solution to the pose estimation challenge at ECCV 2022 Visual Perception for Navigation in Human Environments Workshop. In this challenge, we aim to estimate human poses from in-the-wild stitched panoramic images. Our method is built based on Faster R-CNN for human detection, and HRNet for human pose estimation. We describe technical details for the JRDB-Pose dataset, together with some experimental results. In the competition, we achieved 0.303 $\text{OSPA}_{\text{IOU}}$ and 64.047\% $\text{AP}_{\text{0.5}}$ on the test set of JRDB-Pose.
Abstract:Estimating human poses from videos is critical in human-computer interaction. By precisely estimating human poses, the robot can provide an appropriate response to the human. Most existing approaches use the optical flow, RNNs, or CNNs to extract temporal features from videos. Despite the positive results of these attempts, most of them only straightforwardly integrate features along the temporal dimension, ignoring temporal correlations between joints. In contrast to previous methods, we propose a plug-and-play kinematics modeling module (KMM) based on the domain-cross attention mechanism to model the temporal correlation between joints across different frames explicitly. Specifically, the proposed KMM models the temporal correlation between any two joints by calculating their temporal similarity. In this way, KMM can learn the motion cues of each joint. Using the motion cues (temporal domain) and historical positions of joints (spatial domain), KMM can infer the initial positions of joints in the current frame in advance. In addition, we present a kinematics modeling network (KIMNet) based on the KMM for obtaining the final positions of joints by combining pose features and initial positions of joints. By explicitly modeling temporal correlations between joints, KIMNet can infer the occluded joints at present according to all joints at the previous moment. Furthermore, the KMM is achieved through an attention mechanism, which allows it to maintain the high resolution of features. Therefore, it can transfer rich historical pose information to the current frame, which provides effective pose information for locating occluded joints. Our approach achieves state-of-the-art results on two standard video-based pose estimation benchmarks. Moreover, the proposed KIMNet shows some robustness to the occlusion, demonstrating the effectiveness of the proposed method.