Abstract:Cross-modal hashing (CMH) has appeared as a popular technique for cross-modal retrieval due to its low storage cost and high computational efficiency in large-scale data. Most existing methods implicitly assume that multi-modal data is correctly labeled, which is expensive and even unattainable due to the inevitable imperfect annotations (i.e., noisy labels) in real-world scenarios. Inspired by human cognitive learning, a few methods introduce self-paced learning (SPL) to gradually train the model from easy to hard samples, which is often used to mitigate the effects of feature noise or outliers. It is a less-touched problem that how to utilize SPL to alleviate the misleading of noisy labels on the hash model. To tackle this problem, we propose a new cognitive cross-modal retrieval method called Robust Self-paced Hashing with Noisy Labels (RSHNL), which can mimic the human cognitive process to identify the noise while embracing robustness against noisy labels. Specifically, we first propose a contrastive hashing learning (CHL) scheme to improve multi-modal consistency, thereby reducing the inherent semantic gap. Afterward, we propose center aggregation learning (CAL) to mitigate the intra-class variations. Finally, we propose Noise-tolerance Self-paced Hashing (NSH) that dynamically estimates the learning difficulty for each instance and distinguishes noisy labels through the difficulty level. For all estimated clean pairs, we further adopt a self-paced regularizer to gradually learn hash codes from easy to hard. Extensive experiments demonstrate that the proposed RSHNL performs remarkably well over the state-of-the-art CMH methods.
Abstract:In recent years, anchor and hash-based multi-view clustering methods have gained attention for their efficiency and simplicity in handling large-scale data. However, existing methods often overlook the interactions among multi-view data and higher-order cooperative relationships during projection, negatively impacting the quality of hash representation in low-dimensional spaces, clustering performance, and sensitivity to noise. To address this issue, we propose a novel approach named Tensor-Interacted Projection and Cooperative Hashing for Multi-View Clustering(TPCH). TPCH stacks multiple projection matrices into a tensor, taking into account the synergies and communications during the projection process. By capturing higher-order multi-view information through dual projection and Hamming space, TPCH employs an enhanced tensor nuclear norm to learn more compact and distinguishable hash representations, promoting communication within and between views. Experimental results demonstrate that this refined method significantly outperforms state-of-the-art methods in clustering on five large-scale multi-view datasets. Moreover, in terms of CPU time, TPCH achieves substantial acceleration compared to the most advanced current methods. The code is available at \textcolor{red}{\url{https://github.com/jankin-wang/TPCH}}.
Abstract:This study builds on person perception and human AI interaction (HAII) theories to investigate how content and source cues, specifically race, ethnicity, and nationality, affect judgments of AI-generated content in a high-stakes self-presentation context: college applications. Results of a pre-registered experiment with a nationally representative U.S. sample (N = 644) show that content heuristics, such as linguistic style, played a dominant role in AI detection. Source heuristics, such as nationality, also emerged as a significant factor, with international students more likely to be perceived as using AI, especially when their statements included AI-sounding features. Interestingly, Asian and Hispanic applicants were more likely to be judged as AI users when labeled as domestic students, suggesting interactions between racial stereotypes and AI detection. AI attribution led to lower perceptions of personal statement quality and authenticity, as well as negative evaluations of the applicant's competence, sociability, morality, and future success.
Abstract:DNN-based language models perform excellently on various tasks, but even SOTA LLMs are susceptible to textual adversarial attacks. Adversarial texts play crucial roles in multiple subfields of NLP. However, current research has the following issues. (1) Most textual adversarial attack methods target rich-resourced languages. How do we generate adversarial texts for less-studied languages? (2) Most textual adversarial attack methods are prone to generating invalid or ambiguous adversarial texts. How do we construct high-quality adversarial robustness benchmarks? (3) New language models may be immune to part of previously generated adversarial texts. How do we update adversarial robustness benchmarks? To address the above issues, we introduce HITL-GAT, a system based on a general approach to human-in-the-loop generation of adversarial texts. HITL-GAT contains four stages in one pipeline: victim model construction, adversarial example generation, high-quality benchmark construction, and adversarial robustness evaluation. Additionally, we utilize HITL-GAT to make a case study on Tibetan script which can be a reference for the adversarial research of other less-studied languages.
Abstract:In current multimodal tasks, models typically freeze the encoder and decoder while adapting intermediate layers to task-specific goals, such as region captioning. Region-level visual understanding presents significant challenges for large-scale vision-language models. While limited spatial awareness is a known issue, coarse-grained pretraining, in particular, exacerbates the difficulty of optimizing latent representations for effective encoder-decoder alignment. We propose AlignCap, a framework designed to enhance region-level understanding through fine-grained alignment of latent spaces. Our approach introduces a novel latent feature refinement module that enhances conditioned latent space representations to improve region-level captioning performance. We also propose an innovative alignment strategy, the semantic space alignment module, which boosts the quality of multimodal representations. Additionally, we incorporate contrastive learning in a novel manner within both modules to further enhance region-level captioning performance. To address spatial limitations, we employ a General Object Detection (GOD) method as a data preprocessing pipeline that enhances spatial reasoning at the regional level. Extensive experiments demonstrate that our approach significantly improves region-level captioning performance across various tasks
Abstract:Language models based on deep neural networks are vulnerable to textual adversarial attacks. While rich-resource languages like English are receiving focused attention, Tibetan, a cross-border language, is gradually being studied due to its abundant ancient literature and critical language strategy. Currently, there are several Tibetan adversarial text generation methods, but they do not fully consider the textual features of Tibetan script and overestimate the quality of generated adversarial texts. To address this issue, we propose a novel Tibetan adversarial text generation method called TSCheater, which considers the characteristic of Tibetan encoding and the feature that visually similar syllables have similar semantics. This method can also be transferred to other abugidas, such as Devanagari script. We utilize a self-constructed Tibetan syllable visual similarity database called TSVSDB to generate substitution candidates and adopt a greedy algorithm-based scoring mechanism to determine substitution order. After that, we conduct the method on eight victim language models. Experimentally, TSCheater outperforms existing methods in attack effectiveness, perturbation magnitude, semantic similarity, visual similarity, and human acceptance. Finally, we construct the first Tibetan adversarial robustness evaluation benchmark called AdvTS, which is generated by existing methods and proofread by humans.
Abstract:The k-means algorithm can simplify large-scale spatial vectors, such as 2D geo-locations and 3D point clouds, to support fast analytics and learning. However, when processing large-scale datasets, existing k-means algorithms have been developed to achieve high performance with significant computational resources, such as memory and CPU usage time. These algorithms, though effective, are not well-suited for resource-constrained devices. In this paper, we propose a fast, memory-efficient, and cost-predictable k-means called Dask-means. We first accelerate k-means by designing a memory-efficient accelerator, which utilizes an optimized nearest neighbor search over a memory-tunable index to assign spatial vectors to clusters in batches. We then design a lightweight cost estimator to predict the memory cost and runtime of the k-means task, allowing it to request appropriate memory from devices or adjust the accelerator's required space to meet memory constraints, and ensure sufficient CPU time for running k-means. Experiments show that when simplifying datasets with scale such as $10^6$, Dask-means uses less than $30$MB of memory, achieves over $168$ times speedup compared to the widely-used Lloyd's algorithm. We also validate Dask-means on mobile devices, where it demonstrates significant speedup and low memory cost compared to other state-of-the-art (SOTA) k-means algorithms. Our cost estimator estimates the memory cost with a difference of less than $3\%$ from the actual ones and predicts runtime with an MSE up to $33.3\%$ lower than SOTA methods.
Abstract:As urban populations grow, cities are becoming more complex, driving the deployment of interconnected sensing systems to realize the vision of smart cities. These systems aim to improve safety, mobility, and quality of life through applications that integrate diverse sensors with real-time decision-making. Streetscape applications-focusing on challenges like pedestrian safety and adaptive traffic management-depend on managing distributed, heterogeneous sensor data, aligning information across time and space, and enabling real-time processing. These tasks are inherently complex and often difficult to scale. The Streetscape Application Services Stack (SASS) addresses these challenges with three core services: multimodal data synchronization, spatiotemporal data fusion, and distributed edge computing. By structuring these capabilities as clear, composable abstractions with clear semantics, SASS allows developers to scale streetscape applications efficiently while minimizing the complexity of multimodal integration. We evaluated SASS in two real-world testbed environments: a controlled parking lot and an urban intersection in a major U.S. city. These testbeds allowed us to test SASS under diverse conditions, demonstrating its practical applicability. The Multimodal Data Synchronization service reduced temporal misalignment errors by 88%, achieving synchronization accuracy within 50 milliseconds. Spatiotemporal Data Fusion service improved detection accuracy for pedestrians and vehicles by over 10%, leveraging multicamera integration. The Distributed Edge Computing service increased system throughput by more than an order of magnitude. Together, these results show how SASS provides the abstractions and performance needed to support real-time, scalable urban applications, bridging the gap between sensing infrastructure and actionable streetscape intelligence.
Abstract:Generating and editing dynamic 3D head avatars are crucial tasks in virtual reality and film production. However, existing methods often suffer from facial distortions, inaccurate head movements, and limited fine-grained editing capabilities. To address these challenges, we present DynamicAvatars, a dynamic model that generates photorealistic, moving 3D head avatars from video clips and parameters associated with facial positions and expressions. Our approach enables precise editing through a novel prompt-based editing model, which integrates user-provided prompts with guiding parameters derived from large language models (LLMs). To achieve this, we propose a dual-tracking framework based on Gaussian Splatting and introduce a prompt preprocessing module to enhance editing stability. By incorporating a specialized GAN algorithm and connecting it to our control module, which generates precise guiding parameters from LLMs, we successfully address the limitations of existing methods. Additionally, we develop a dynamic editing strategy that selectively utilizes specific training datasets to improve the efficiency and adaptability of the model for dynamic editing tasks.
Abstract:Large language models (LLMs) excel in high-resource languages but face notable challenges in low-resource languages like Mongolian. This paper addresses these challenges by categorizing capabilities into language abilities (syntax and semantics) and cognitive abilities (knowledge and reasoning). To systematically evaluate these areas, we developed MM-Eval, a specialized dataset based on Modern Mongolian Language Textbook I and enriched with WebQSP and MGSM datasets. Preliminary experiments on models including Qwen2-7B-Instruct, GLM4-9b-chat, Llama3.1-8B-Instruct, GPT-4, and DeepseekV2.5 revealed that: 1) all models performed better on syntactic tasks than semantic tasks, highlighting a gap in deeper language understanding; and 2) knowledge tasks showed a moderate decline, suggesting that models can transfer general knowledge from high-resource to low-resource contexts. The release of MM-Eval, comprising 569 syntax, 677 semantics, 344 knowledge, and 250 reasoning tasks, offers valuable insights for advancing NLP and LLMs in low-resource languages like Mongolian. The dataset is available at https://github.com/joenahm/MM-Eval.