Abstract:Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.
Abstract:Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.
Abstract:Developing versatile quadruped robots that can smoothly perform various actions and tasks in real-world environments remains a significant challenge. This paper introduces a novel vision-language-action (VLA) model, mixture of robotic experts (MoRE), for quadruped robots that aim to introduce reinforcement learning (RL) for fine-tuning large-scale VLA models with a large amount of mixed-quality data. MoRE integrates multiple low-rank adaptation modules as distinct experts within a dense multi-modal large language model (MLLM), forming a sparse-activated mixture-of-experts model. This design enables the model to effectively adapt to a wide array of downstream tasks. Moreover, we employ a reinforcement learning-based training objective to train our model as a Q-function after deeply exploring the structural properties of our tasks. Effective learning from automatically collected mixed-quality data enhances data efficiency and model performance. Extensive experiments demonstrate that MoRE outperforms all baselines across six different skills and exhibits superior generalization capabilities in out-of-distribution scenarios. We further validate our method in real-world scenarios, confirming the practicality of our approach and laying a solid foundation for future research on multi-task learning in quadruped robots.
Abstract:Vision-Language-Action (VLA) models demonstrate remarkable potential for generalizable robotic manipulation. The performance of VLA models can be improved by integrating with action chunking, a critical technique for effective control. However, action chunking linearly scales up action dimensions in VLA models with increased chunking sizes. This reduces the inference efficiency. To tackle this problem, we propose PD-VLA, the first parallel decoding framework for VLA models integrated with action chunking. Our framework reformulates autoregressive decoding as a nonlinear system solved by parallel fixed-point iterations. This approach preserves model performance with mathematical guarantees while significantly improving decoding speed. In addition, it enables training-free acceleration without architectural changes, as well as seamless synergy with existing acceleration techniques. Extensive simulations validate that our PD-VLA maintains competitive success rates while achieving 2.52 times execution frequency on manipulators (with 7 degrees of freedom) compared with the fundamental VLA model. Furthermore, we experimentally identify the most effective settings for acceleration. Finally, real-world experiments validate its high applicability across different tasks.
Abstract:This paper addresses the limitations of current humanoid robot control frameworks, which primarily rely on reactive mechanisms and lack autonomous interaction capabilities due to data scarcity. We propose Humanoid-VLA, a novel framework that integrates language understanding, egocentric scene perception, and motion control, enabling universal humanoid control. Humanoid-VLA begins with language-motion pre-alignment using non-egocentric human motion datasets paired with textual descriptions, allowing the model to learn universal motion patterns and action semantics. We then incorporate egocentric visual context through a parameter efficient video-conditioned fine-tuning, enabling context-aware motion generation. Furthermore, we introduce a self-supervised data augmentation strategy that automatically generates pseudoannotations directly derived from motion data. This process converts raw motion sequences into informative question-answer pairs, facilitating the effective use of large-scale unlabeled video data. Built upon whole-body control architectures, extensive experiments show that Humanoid-VLA achieves object interaction and environment exploration tasks with enhanced contextual awareness, demonstrating a more human-like capacity for adaptive and intelligent engagement.
Abstract:Vision-language-action models (VLAs) have become increasingly popular in robot manipulation for their end-to-end design and remarkable performance. However, existing VLAs rely heavily on vision-language models (VLMs) that only support text-based instructions, neglecting the more natural speech modality for human-robot interaction. Traditional speech integration methods usually involves a separate speech recognition system, which complicates the model and introduces error propagation. Moreover, the transcription procedure would lose non-semantic information in the raw speech, such as voiceprint, which may be crucial for robots to successfully complete customized tasks. To overcome above challenges, we propose VLAS, a novel end-to-end VLA that integrates speech recognition directly into the robot policy model. VLAS allows the robot to understand spoken commands through inner speech-text alignment and produces corresponding actions to fulfill the task. We also present two new datasets, SQA and CSI, to support a three-stage tuning process for speech instructions, which empowers VLAS with the ability of multimodal interaction across text, image, speech, and robot actions. Taking a step further, a voice retrieval-augmented generation (RAG) paradigm is designed to enable our model to effectively handle tasks that require individual-specific knowledge. Our extensive experiments show that VLAS can effectively accomplish robot manipulation tasks with diverse speech commands, offering a seamless and customized interaction experience.
Abstract:Diffusion policies have shown promise in learning complex behaviors from demonstrations, particularly for tasks requiring precise control and long-term planning. However, they face challenges in robustness when encountering distribution shifts. This paper explores improving diffusion-based imitation learning models through online interactions with the environment. We propose OTPR (Optimal Transport-guided score-based diffusion Policy for Reinforcement learning fine-tuning), a novel method that integrates diffusion policies with RL using optimal transport theory. OTPR leverages the Q-function as a transport cost and views the policy as an optimal transport map, enabling efficient and stable fine-tuning. Moreover, we introduce masked optimal transport to guide state-action matching using expert keypoints and a compatibility-based resampling strategy to enhance training stability. Experiments on three simulation tasks demonstrate OTPR's superior performance and robustness compared to existing methods, especially in complex and sparse-reward environments. In sum, OTPR provides an effective framework for combining IL and RL, achieving versatile and reliable policy learning. The code will be released at https://github.com/Sunmmyy/OTPR.git.
Abstract:With the rapid development of embodied artificial intelligence, significant progress has been made in vision-language-action (VLA) models for general robot decision-making. However, the majority of existing VLAs fail to account for the inevitable external perturbations encountered during deployment. These perturbations introduce unforeseen state information to the VLA, resulting in inaccurate actions and consequently, a significant decline in generalization performance. The classic internal model control (IMC) principle demonstrates that a closed-loop system with an internal model that includes external input signals can accurately track the reference input and effectively offset the disturbance. We propose a novel closed-loop VLA method GEVRM that integrates the IMC principle to enhance the robustness of robot visual manipulation. The text-guided video generation model in GEVRM can generate highly expressive future visual planning goals. Simultaneously, we evaluate perturbations by simulating responses, which are called internal embeddings and optimized through prototype contrastive learning. This allows the model to implicitly infer and distinguish perturbations from the external environment. The proposed GEVRM achieves state-of-the-art performance on both standard and perturbed CALVIN benchmarks and shows significant improvements in realistic robot tasks.
Abstract:Behavior Cloning (BC) is a widely adopted visual imitation learning method in robot manipulation. Current BC approaches often enhance generalization by leveraging large datasets and incorporating additional visual and textual modalities to capture more diverse information. However, these methods overlook whether the learned representations contain redundant information and lack a solid theoretical foundation to guide the learning process. To address these limitations, we adopt an information-theoretic perspective and introduce mutual information to quantify and mitigate redundancy in latent representations. Building on this, we incorporate the Information Bottleneck (IB) principle into BC, which extends the idea of reducing redundancy by providing a structured framework for compressing irrelevant information while preserving task-relevant features. This work presents the first comprehensive study on redundancy in latent representations across various methods, backbones, and experimental settings, while extending the generalizability of the IB to BC. Extensive experiments and analyses on the CortexBench and LIBERO benchmarks demonstrate significant performance improvements with IB, underscoring the importance of reducing input data redundancy and highlighting its practical value for more practical applications. Project Page: https://baishuanghao.github.io/BC-IB.github.io.
Abstract:This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.