Abstract:Audio-driven 3D face animation is increasingly vital in live streaming and augmented reality applications. While remarkable progress has been observed, most existing approaches are designed for specific individuals with predefined speaking styles, thus neglecting the adaptability to varied speaking styles. To address this limitation, this paper introduces MetaFace, a novel methodology meticulously crafted for speaking style adaptation. Grounded in the novel concept of meta-learning, MetaFace is composed of several key components: the Robust Meta Initialization Stage (RMIS) for fundamental speaking style adaptation, the Dynamic Relation Mining Neural Process (DRMN) for forging connections between observed and unobserved speaking styles, and the Low-rank Matrix Memory Reduction Approach to enhance the efficiency of model optimization as well as learning style details. Leveraging these novel designs, MetaFace not only significantly outperforms robust existing baselines but also establishes a new state-of-the-art, as substantiated by our experimental results.
Abstract:Point-based representations have recently gained popularity in novel view synthesis, for their unique advantages, e.g., intuitive geometric representation, simple manipulation, and faster convergence. However, based on our observation, these point-based neural re-rendering methods are only expected to perform well under ideal conditions and suffer from noisy, patchy points and unbounded scenes, which are challenging to handle but defacto common in real applications. To this end, we revisit one such influential method, known as Neural Point-based Graphics (NPBG), as our baseline, and propose Robust Point-based Graphics (RPBG). We in-depth analyze the factors that prevent NPBG from achieving satisfactory renderings on generic datasets, and accordingly reform the pipeline to make it more robust to varying datasets in-the-wild. Inspired by the practices in image restoration, we greatly enhance the neural renderer to enable the attention-based correction of point visibility and the inpainting of incomplete rasterization, with only acceptable overheads. We also seek for a simple and lightweight alternative for environment modeling and an iterative method to alleviate the problem of poor geometry. By thorough evaluation on a wide range of datasets with different shooting conditions and camera trajectories, RPBG stably outperforms the baseline by a large margin, and exhibits its great robustness over state-of-the-art NeRF-based variants. Code available at https://github.com/QT-Zhu/RPBG.
Abstract:In daily life, humans utilize hands to manipulate objects. Modeling the shape of objects that are manipulated by the hand is essential for AI to comprehend daily tasks and to learn manipulation skills. However, previous approaches have encountered difficulties in reconstructing the precise shapes of hand-held objects, primarily owing to a deficiency in prior shape knowledge and inadequate data for training. As illustrated, given a particular type of tool, such as a mug, despite its infinite variations in shape and appearance, humans have a limited number of 'effective' modes and poses for its manipulation. This can be attributed to the fact that humans have mastered the shape prior of the 'mug' category, and can quickly establish the corresponding relations between different mug instances and the prior, such as where the rim and handle are located. In light of this, we propose a new method, CHORD, for Category-level Hand-held Object Reconstruction via shape Deformation. CHORD deforms a categorical shape prior for reconstructing the intra-class objects. To ensure accurate reconstruction, we empower CHORD with three types of awareness: appearance, shape, and interacting pose. In addition, we have constructed a new dataset, COMIC, of category-level hand-object interaction. COMIC contains a rich array of object instances, materials, hand interactions, and viewing directions. Extensive evaluation shows that CHORD outperforms state-of-the-art approaches in both quantitative and qualitative measures. Code, model, and datasets are available at https://kailinli.github.io/CHORD.
Abstract:Enable neural networks to capture 3D geometrical-aware features is essential in multi-view based vision tasks. Previous methods usually encode the 3D information of multi-view stereo into the 2D features. In contrast, we present a novel method, named POEM, that directly operates on the 3D POints Embedded in the Multi-view stereo for reconstructing hand mesh in it. Point is a natural form of 3D information and an ideal medium for fusing features across views, as it has different projections on different views. Our method is thus in light of a simple yet effective idea, that a complex 3D hand mesh can be represented by a set of 3D points that 1) are embedded in the multi-view stereo, 2) carry features from the multi-view images, and 3) encircle the hand. To leverage the power of points, we design two operations: point-based feature fusion and cross-set point attention mechanism. Evaluation on three challenging multi-view datasets shows that POEM outperforms the state-of-the-art in hand mesh reconstruction. Code and models are available for research at https://github.com/lixiny/POEM.
Abstract:Full-body reconstruction is a fundamental but challenging task. Owing to the lack of annotated data, the performances of existing methods are largely limited. In this paper, we propose a novel method named Full-body Reconstruction from Part Experts~(FuRPE) to tackle this issue. In FuRPE, the network is trained using pseudo labels and features generated from part-experts. An simple yet effective pseudo ground-truth selection scheme is proposed to extract high-quality pseudo labels. In this way, a large-scale of existing human body reconstruction datasets can be leveraged and contribute to the model training. In addition, an exponential moving average training strategy is introduced to train the network in a self-supervised manner, further boosting the performance of the model. Extensive experiments on several widely used datasets demonstrate the effectiveness of our method over the baseline. Our method achieves the state-of-the-art performance. Code will be publicly available for further research.
Abstract:Monocular 3D object detection is a fundamental but very important task to many applications including autonomous driving, robotic grasping and augmented reality. Existing leading methods tend to estimate the depth of the input image first, and detect the 3D object based on point cloud. This routine suffers from the inherent gap between depth estimation and object detection. Besides, the prediction error accumulation would also affect the performance. In this paper, a novel method named MonoPCNS is proposed. The insight behind introducing MonoPCNS is that we propose to simulate the feature learning behavior of a point cloud based detector for monocular detector during the training period. Hence, during inference period, the learned features and prediction would be similar to the point cloud based detector as possible. To achieve it, we propose one scene-level simulation module, one RoI-level simulation module and one response-level simulation module, which are progressively used for the detector's full feature learning and prediction pipeline. We apply our method to the famous M3D-RPN detector and CaDDN detector, conducting extensive experiments on KITTI and Waymo Open dataset. Results show that our method consistently improves the performance of different monocular detectors for a large margin without changing their network architectures. Our method finally achieves state-of-the-art performance.
Abstract:Point clouds scanned by real-world sensors are always incomplete, irregular, and noisy, making the point cloud completion task become increasingly more important. Though many point cloud completion methods have been proposed, most of them require a large number of paired complete-incomplete point clouds for training, which is labor exhausted. In contrast, this paper proposes a novel Reconstruction-Aware Prior Distillation semi-supervised point cloud completion method named RaPD, which takes advantage of a two-stage training scheme to reduce the dependence on a large-scale paired dataset. In training stage 1, the so-called deep semantic prior is learned from both unpaired complete and unpaired incomplete point clouds using a reconstruction-aware pretraining process. While in training stage 2, we introduce a semi-supervised prior distillation process, where an encoder-decoder-based completion network is trained by distilling the prior into the network utilizing only a small number of paired training samples. A self-supervised completion module is further introduced, excavating the value of a large number of unpaired incomplete point clouds, leading to an increase in the network's performance. Extensive experiments on several widely used datasets demonstrate that RaPD, the first semi-supervised point cloud completion method, achieves superior performance to previous methods on both homologous and heterologous scenarios.
Abstract:Recently, RGBD-based category-level 6D object pose estimation has achieved promising improvement in performance, however, the requirement of depth information prohibits broader applications. In order to relieve this problem, this paper proposes a novel approach named Object Level Depth reconstruction Network (OLD-Net) taking only RGB images as input for category-level 6D object pose estimation. We propose to directly predict object-level depth from a monocular RGB image by deforming the category-level shape prior into object-level depth and the canonical NOCS representation. Two novel modules named Normalized Global Position Hints (NGPH) and Shape-aware Decoupled Depth Reconstruction (SDDR) module are introduced to learn high fidelity object-level depth and delicate shape representations. At last, the 6D object pose is solved by aligning the predicted canonical representation with the back-projected object-level depth. Extensive experiments on the challenging CAMERA25 and REAL275 datasets indicate that our model, though simple, achieves state-of-the-art performance.
Abstract:Recently, category-level 6D object pose estimation has achieved significant improvements with the development of reconstructing canonical 3D representations. However, the reconstruction quality of existing methods is still far from excellent. In this paper, we propose a novel Adversarial Canonical Representation Reconstruction Network named ACR-Pose. ACR-Pose consists of a Reconstructor and a Discriminator. The Reconstructor is primarily composed of two novel sub-modules: Pose-Irrelevant Module (PIM) and Relational Reconstruction Module (RRM). PIM tends to learn canonical-related features to make the Reconstructor insensitive to rotation and translation, while RRM explores essential relational information between different input modalities to generate high-quality features. Subsequently, a Discriminator is employed to guide the Reconstructor to generate realistic canonical representations. The Reconstructor and the Discriminator learn to optimize through adversarial training. Experimental results on the prevalent NOCS-CAMERA and NOCS-REAL datasets demonstrate that our method achieves state-of-the-art performance.