Abstract:Kolmogorov-Arnold Networks (KAN) is an emerging neural network architecture in machine learning. It has greatly interested the research community about whether KAN can be a promising alternative of the commonly used Multi-Layer Perceptions (MLP). Experiments in various fields demonstrated that KAN-based machine learning can achieve comparable if not better performance than MLP-based methods, but with much smaller parameter scales and are more explainable. In this paper, we explore the incorporation of KAN into the actor and critic networks for offline reinforcement learning (RL). We evaluated the performance, parameter scales, and training efficiency of various KAN and MLP based conservative Q-learning (CQL) on the the classical D4RL benchmark for offline RL. Our study demonstrates that KAN can achieve performance close to the commonly used MLP with significantly fewer parameters. This provides us an option to choose the base networks according to the requirements of the offline RL tasks.
Abstract:Audio-driven 3D face animation is increasingly vital in live streaming and augmented reality applications. While remarkable progress has been observed, most existing approaches are designed for specific individuals with predefined speaking styles, thus neglecting the adaptability to varied speaking styles. To address this limitation, this paper introduces MetaFace, a novel methodology meticulously crafted for speaking style adaptation. Grounded in the novel concept of meta-learning, MetaFace is composed of several key components: the Robust Meta Initialization Stage (RMIS) for fundamental speaking style adaptation, the Dynamic Relation Mining Neural Process (DRMN) for forging connections between observed and unobserved speaking styles, and the Low-rank Matrix Memory Reduction Approach to enhance the efficiency of model optimization as well as learning style details. Leveraging these novel designs, MetaFace not only significantly outperforms robust existing baselines but also establishes a new state-of-the-art, as substantiated by our experimental results.
Abstract:In this paper, we research the new topic of object effects recommendation in micro-video platforms, which is a challenging but important task for many practical applications such as advertisement insertion. To avoid the problem of introducing background bias caused by directly learning video content from image frames, we propose to utilize the meaningful body language hidden in 3D human pose for recommendation. To this end, in this work, a novel human pose driven object effects recommendation network termed PoseRec is introduced. PoseRec leverages the advantages of 3D human pose detection and learns information from multi-frame 3D human pose for video-item registration, resulting in high quality object effects recommendation performance. Moreover, to solve the inherent ambiguity and sparsity issues that exist in object effects recommendation, we further propose a novel item-aware implicit prototype learning module and a novel pose-aware transductive hard-negative mining module to better learn pose-item relationships. What's more, to benchmark methods for the new research topic, we build a new dataset for object effects recommendation named Pose-OBE. Extensive experiments on Pose-OBE demonstrate that our method can achieve superior performance than strong baselines.