Abstract:Semi-supervised learning (SSL) has made notable advancements in medical image segmentation (MIS), particularly in scenarios with limited labeled data and significantly enhancing data utilization efficiency. Previous methods primarily focus on complex training strategies to utilize unlabeled data but neglect the importance of graph structural information. Different from existing methods, we propose a graph-based clustering for semi-supervised medical image segmentation (GraphCL) by jointly modeling graph data structure in a unified deep model. The proposed GraphCL model enjoys several advantages. Firstly, to the best of our knowledge, this is the first work to model the data structure information for semi-supervised medical image segmentation (SSMIS). Secondly, to get the clustered features across different graphs, we integrate both pairwise affinities between local image features and raw features as inputs. Extensive experimental results on three standard benchmarks show that the proposed GraphCL algorithm outperforms state-of-the-art semi-supervised medical image segmentation methods.
Abstract:In semi-supervised domain adaptation (SSDA), the model aims to leverage partially labeled target domain data along with a large amount of labeled source domain data to enhance its generalization capability for the target domain. A key advantage of SSDA is its ability to significantly reduce reliance on labeled data, thereby lowering the costs and time associated with data preparation. Most existing SSDA methods utilize information from domain labels and class labels but overlook the structural information of the data. To address this issue, this paper proposes a graph learning perspective (AGLP) for semi-supervised domain adaptation. We apply the graph convolutional network to the instance graph which allows structural information to propagate along the weighted graph edges. The proposed AGLP model has several advantages. First, to the best of our knowledge, this is the first work to model structural information in SSDA. Second, the proposed model can effectively learn domain-invariant and semantic representations, reducing domain discrepancies in SSDA. Extensive experimental results on multiple standard benchmarks demonstrate that the proposed AGLP algorithm outperforms state-of-the-art semi-supervised domain adaptation methods.
Abstract:Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria, which can lead to severe complications and even death. Due to the intermittent nature of the AF, early and timely monitoring of AF is critical for patients to prevent further exacerbation of the condition. Although ambulatory ECG Holter monitors provide accurate monitoring, the high cost of these devices hinders their wider adoption. Current mobile-based AF detection systems offer a portable solution, however, these systems have various applicability issues such as being easily affected by environmental factors and requiring significant user effort. To overcome the above limitations, we present MobileAF, a novel smartphone-based AF detection system using speakers and microphones. In order to capture minute cardiac activities, we propose a multi-channel pulse wave probing method. In addition, we enhance the signal quality by introducing a three-stage pulse wave purification pipeline. What's more, a ResNet-based network model is built to implement accurate and reliable AF detection. We collect data from 23 participants utilizing our data collection application on the smartphone. Extensive experimental results demonstrate the superior performance of our system, with 97.9% accuracy, 96.8% precision, 97.2% recall, 98.3% specificity, and 97.0% F1 score.
Abstract:Kolmogorov-Arnold Networks (KAN) is an emerging neural network architecture in machine learning. It has greatly interested the research community about whether KAN can be a promising alternative of the commonly used Multi-Layer Perceptions (MLP). Experiments in various fields demonstrated that KAN-based machine learning can achieve comparable if not better performance than MLP-based methods, but with much smaller parameter scales and are more explainable. In this paper, we explore the incorporation of KAN into the actor and critic networks for offline reinforcement learning (RL). We evaluated the performance, parameter scales, and training efficiency of various KAN and MLP based conservative Q-learning (CQL) on the the classical D4RL benchmark for offline RL. Our study demonstrates that KAN can achieve performance close to the commonly used MLP with significantly fewer parameters. This provides us an option to choose the base networks according to the requirements of the offline RL tasks.
Abstract:Traditional test-time training (TTT) methods, while addressing domain shifts, often assume a consistent class set, limiting their applicability in real-world scenarios characterized by infinite variety. Open-World Test-Time Training (OWTTT) addresses the challenge of generalizing deep learning models to unknown target domain distributions, especially in the presence of strong Out-of-Distribution (OOD) data. Existing TTT methods often struggle to maintain performance when confronted with strong OOD data. In OWTTT, the focus has predominantly been on distinguishing between overall strong and weak OOD data. However, during the early stages of TTT, initial feature extraction is hampered by interference from strong OOD and corruptions, resulting in diminished contrast and premature classification of certain classes as strong OOD. To address this, we introduce Open World Dynamic Contrastive Learning (OWDCL), an innovative approach that utilizes contrastive learning to augment positive sample pairs. This strategy not only bolsters contrast in the early stages but also significantly enhances model robustness in subsequent stages. In comparison datasets, our OWDCL model has produced the most advanced performance.
Abstract:Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria, which can lead to severe complications and even death. Due to the intermittent nature of the AF, early and timely monitoring of AF is critical for patients to prevent further exacerbation of the condition. Although ambulatory ECG Holter monitors provide accurate monitoring, the high cost of these devices hinders their wider adoption. Current mobile-based AF detection systems offer a portable solution. However, these systems have various applicability issues, such as being easily affected by environmental factors and requiring significant user effort. To overcome the above limitations, we present AcousAF, a novel AF detection system based on acoustic sensors of smartphones. Particularly, we explore the potential of pulse wave acquisition from the wrist using smartphone speakers and microphones. In addition, we propose a well-designed framework comprised of pulse wave probing, pulse wave extraction, and AF detection to ensure accurate and reliable AF detection. We collect data from 20 participants utilizing our custom data collection application on the smartphone. Extensive experimental results demonstrate the high performance of our system, with 92.8% accuracy, 86.9% precision, 87.4% recall, and 87.1% F1 Score.
Abstract:Traditional deep neural networks typically use end-to-end backpropagation, which often places a big burden on GPU memory. Another promising training method is local learning, which involves splitting the network into blocks and training them in parallel with the help of an auxiliary network. Local learning has been widely studied and applied to image classification tasks, and its performance is comparable to that of end-to-end method. However, different image tasks often rely on different feature representations, which is difficult for typical auxiliary networks to adapt to. To solve this problem, we propose the construction method of Global-Local Collaborative Auxiliary Network (GLCAN), which provides a macroscopic design approach for auxiliary networks. This is the first demonstration that local learning methods can be successfully applied to other tasks such as object detection and super-resolution. GLCAN not only saves a lot of GPU memory, but also has comparable performance to an end-to-end approach on data sets for multiple different tasks.
Abstract:Most earlier investigations on talking face generation have focused on the synchronization of lip motion and speech content. However, human head pose and facial emotions are equally important characteristics of natural human faces. While audio-driven talking face generation has seen notable advancements, existing methods either overlook facial emotions or are limited to specific individuals and cannot be applied to arbitrary subjects. In this paper, we propose a one-shot Talking Head Generation framework (SPEAK) that distinguishes itself from general Talking Face Generation by enabling emotional and postural control. Specifically, we introduce the Inter-Reconstructed Feature Disentanglement (IRFD) method to decouple human facial features into three latent spaces. We then design a face editing module that modifies speech content and facial latent codes into a single latent space. Subsequently, we present a novel generator that employs modified latent codes derived from the editing module to regulate emotional expression, head poses, and speech content in synthesizing facial animations. Extensive trials demonstrate that our method can generate realistic talking head with coordinated lip motions, authentic facial emotions, and smooth head movements. The demo video is available at the anonymous link: https://anonymous.4open.science/r/SPEAK-F56E
Abstract:Image synthesis has attracted emerging research interests in academic and industry communities. Deep learning technologies especially the generative models greatly inspired controllable image synthesis approaches and applications, which aim to generate particular visual contents with latent prompts. In order to further investigate low-level controllable image synthesis problem which is crucial for fine image rendering and editing tasks, we present a survey of some recent works on 3D controllable image synthesis using deep learning. We first introduce the datasets and evaluation indicators for 3D controllable image synthesis. Then, we review the state-of-the-art research for geometrically controllable image synthesis in two aspects: 1) Viewpoint/pose-controllable image synthesis; 2) Structure/shape-controllable image synthesis. Furthermore, the photometrically controllable image synthesis approaches are also reviewed for 3D re-lighting researches. While the emphasis is on 3D controllable image synthesis algorithms, the related applications, products and resources are also briefly summarized for practitioners.
Abstract:Multi-instance multi-label (MIML) learning is widely applicated in numerous domains, such as the image classification where one image contains multiple instances correlated with multiple logic labels simultaneously. The related labels in existing MIML are all assumed as logical labels with equal significance. However, in practical applications in MIML, significance of each label for multiple instances per bag (such as an image) is significant different. Ignoring labeling significance will greatly lose the semantic information of the object, so that MIML is not applicable in complex scenes with a poor learning performance. To this end, this paper proposed a novel MIML framework based on graph label enhancement, namely GLEMIML, to improve the classification performance of MIML by leveraging label significance. GLEMIML first recognizes the correlations among instances by establishing the graph and then migrates the implicit information mined from the feature space to the label space via nonlinear mapping, thus recovering the label significance. Finally, GLEMIML is trained on the enhanced data through matching and interaction mechanisms. GLEMIML (AvgRank: 1.44) can effectively improve the performance of MIML by mining the label distribution mechanism and show better results than the SOTA method (AvgRank: 2.92) on multiple benchmark datasets.