Abstract:The efficient disassembly of end-of-life electric vehicle batteries(EOL-EVBs) is crucial for green manufacturing and sustainable development. The current pre-programmed disassembly conducted by the Autonomous Mobile Manipulator Robot(AMMR) struggles to meet the disassembly requirements in dynamic environments, complex scenarios, and unstructured processes. In this paper, we propose a Battery Disassembly AMMR(BEAM-1) system based on NeuralSymbolic AI. It detects the environmental state by leveraging a combination of multi-sensors and neural predicates and then translates this information into a quasi-symbolic space. In real-time, it identifies the optimal sequence of action primitives through LLM-heuristic tree search, ensuring high-precision execution of these primitives. Additionally, it employs positional speculative sampling using intuitive networks and achieves the disassembly of various bolt types with a meticulously designed end-effector. Importantly, BEAM-1 is a continuously learning embodied intelligence system capable of subjective reasoning like a human, and possessing intuition. A large number of real scene experiments have proved that it can autonomously perceive, decide, and execute to complete the continuous disassembly of bolts in multiple, multi-category, and complex situations, with a success rate of 98.78%. This research attempts to use NeuroSymbolic AI to give robots real autonomous reasoning, planning, and learning capabilities. BEAM-1 realizes the revolution of battery disassembly. Its framework can be easily ported to any robotic system to realize different application scenarios, which provides a ground-breaking idea for the design and implementation of future embodied intelligent robotic systems.
Abstract:Integrating visible and infrared images into one high-quality image, also known as visible and infrared image fusion, is a challenging yet critical task for many downstream vision tasks. Most existing works utilize pretrained deep neural networks or design sophisticated frameworks with strong priors for this task, which may be unsuitable or lack flexibility. This paper presents SimpleFusion, a simple yet effective framework for visible and infrared image fusion. Our framework follows the decompose-and-fusion paradigm, where the visible and the infrared images are decomposed into reflectance and illumination components via Retinex theory and followed by the fusion of these corresponding elements. The whole framework is designed with two plain convolutional neural networks without downsampling, which can perform image decomposition and fusion efficiently. Moreover, we introduce decomposition loss and a detail-to-semantic loss to preserve the complementary information between the two modalities for fusion. We conduct extensive experiments on the challenging benchmarks, verifying the superiority of our method over previous state-of-the-arts. Code is available at \href{https://github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images}{https://github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images}
Abstract:The recently unprecedented advancements in Large Language Models (LLMs) have propelled the medical community by establishing advanced medical-domain models. However, due to the limited collection of medical datasets, there are only a few comprehensive benchmarks available to gauge progress in this area. In this paper, we introduce a new medical question-answering (QA) dataset that contains massive manual instruction for solving Traditional Chinese Medicine examination tasks, called TCMD. Specifically, our TCMD collects massive questions across diverse domains with their annotated medical subjects and thus supports us in comprehensively assessing the capability of LLMs in the TCM domain. Extensive evaluation of various general LLMs and medical-domain-specific LLMs is conducted. Moreover, we also analyze the robustness of current LLMs in solving TCM QA tasks by introducing randomness. The inconsistency of the experimental results also reveals the shortcomings of current LLMs in solving QA tasks. We also expect that our dataset can further facilitate the development of LLMs in the TCM area.
Abstract:Orthogonal time frequency space (OTFS) modulation, a delay-Doppler (DD) domain communication scheme exhibiting strong robustness against the Doppler shifts, has the potentials to be employed in LEO satellite communications. However, the performance comparison with the orthogonal frequency division multiplexing (OFDM) modulation and the resource allocation scheme for multiuser OTFS-based LEO satellite communication system have rarely been investigated. In this paper, we conduct a performance comparison under various channel conditions between the OTFS and OFDM modulations, encompassing evaluations of sum-rate and bit error ratio (BER). Additionally, we investigate the joint optimal allocation of power and delay-Doppler resource blocks aiming at maximizing sum-rate for multiuser downlink OTFS-based LEO satellite communication systems. Unlike the conventional modulations relaying on complex input-output relations within the Time-Frequency (TF) domain, the OTFS modulation exploits both time and frequency diversities, i.e., delay and Doppler shifts remain constant during a OTFS frame, which facilitates a DD domain input-output simple relation for our investigation. We transform the resulting non-convex and combinatorial optimization problem into an equivalent difference of convex problem by decoupling the conditional constraints, and solve the transformed problem via penalty convex-concave procedure algorithm. Simulation results demonstrate that the OTFS modulation is robust to carrier frequency offsets (CFO) caused by high-mobility of LEO satellites, and has superior performance to the OFDM modulation. Moreover, numerical results indicate that our proposed resource allocation scheme has higher sum-rate than existed schemes for the OTFS modulation, such as delay divided multiple access and Doppler divided multiple access, especially in the high signal-to-noise ratio (SNR) regime.
Abstract:The robot position speculation, which determines where the chassis should move, is one key step to control the mobile manipulators. The target position must ensure the feasibility of chassis movement and manipulability, which is guaranteed by randomized sampling and kinematic checking in traditional methods. Addressing the demands of agile robotics, this paper proposes a robot position speculation network(RPSN), a learning-based approach to enhance the agility of mobile manipulators. The RPSN incorporates a differentiable inverse kinematic algorithm and a neural network. Through end-to-end training, the RPSN can speculate positions with a high success rate. We apply the RPSN to mobile manipulators disassembling end-of-life electric vehicle batteries (EOL-EVBs). Extensive experiments on various simulated environments and physical mobile manipulators demonstrate that the probability of the initial position provided by RPSN being the ideal position is 96.67%. From the kinematic constraint perspective, it achieves 100% generation of the ideal position on average within 1.28 attempts. Much lower than that of random sampling, 31.04. Moreover, the proposed method demonstrates superior data efficiency over pure neural network approaches. The proposed RPSN enables the robot to quickly infer feasible target positions by intuition. This work moves towards building agile robots that can act swiftly like humans.
Abstract:In this paper, the problem of joint user scheduling and computing resource allocation in asynchronous mobile edge computing (MEC) networks is studied. In such networks, edge devices will offload their computational tasks to an MEC server, using the energy they harvest from this server. To get their tasks processed on time using the harvested energy, edge devices will strategically schedule their task offloading, and compete for the computational resource at the MEC server. Then, the MEC server will execute these tasks asynchronously based on the arrival of the tasks. This joint user scheduling, time and computation resource allocation problem is posed as an optimization framework whose goal is to find the optimal scheduling and allocation strategy that minimizes the energy consumption of these mobile computing tasks. To solve this mixed-integer non-linear programming problem, the general benders decomposition method is adopted which decomposes the original problem into a primal problem and a master problem. Specifically, the primal problem is related to computation resource and time slot allocation, of which the optimal closed-form solution is obtained. The master problem regarding discrete user scheduling variables is constructed by adding optimality cuts or feasibility cuts according to whether the primal problem is feasible, which is a standard mixed-integer linear programming problem and can be efficiently solved. By iteratively solving the primal problem and master problem, the optimal scheduling and resource allocation scheme is obtained. Simulation results demonstrate that the proposed asynchronous computing framework reduces 87.17% energy consumption compared with conventional synchronous computing counterpart.
Abstract:Biased enhanced sampling methods utilizing collective variables (CVs) are powerful tools for sampling conformational ensembles. Due to high intrinsic dimensions, efficiently generating conformational ensembles for complex systems requires enhanced sampling on high-dimensional free energy surfaces. While methods like temperature-accelerated molecular dynamics (TAMD) can adopt many CVs in a simulation, unbiasing the simulation requires accurate modeling of a high-dimensional CV probability distribution, which is challenging for traditional density estimation techniques. Here we propose an unbiasing method based on the score-based diffusion model, a deep generative learning method that excels in density estimation across complex data landscapes. We test the score-based diffusion unbiasing method on TAMD simulations. The results demonstrate that this unbiasing approach significantly outperforms traditional unbiasing methods, and can generate accurate unbiased conformational ensembles for simulations with a number of CVs higher than usual ranges.
Abstract:Deep neural networks (DNNs) that incorporated lifelong sequential modeling (LSM) have brought great success to recommendation systems in various social media platforms. While continuous improvements have been made in domain-specific LSM, limited work has been done in cross-domain LSM, which considers modeling of lifelong sequences of both target domain and source domain. In this paper, we propose Lifelong Cross Network (LCN) to incorporate cross-domain LSM to improve the click-through rate (CTR) prediction in the target domain. The proposed LCN contains a LifeLong Attention Pyramid (LAP) module that comprises of three levels of cascaded attentions to effectively extract interest representations with respect to the candidate item from lifelong sequences. We also propose Cross Representation Production (CRP) module to enforce additional supervision on the learning and alignment of cross-domain representations so that they can be better reused on learning of the CTR prediction in the target domain. We conducted extensive experiments on WeChat Channels industrial dataset as well as on benchmark dataset. Results have revealed that the proposed LCN outperforms existing work in terms of both prediction accuracy and online performance.
Abstract:Recently, large language models (LLMs) have shown great potential in recommender systems, either improving existing recommendation models or serving as the backbone. However, there exists a large semantic gap between LLMs and recommender systems, since items to be recommended are often indexed by discrete identifiers (item ID) out of the LLM's vocabulary. In essence, LLMs capture language semantics while recommender systems imply collaborative semantics, making it difficult to sufficiently leverage the model capacity of LLMs for recommendation. To address this challenge, in this paper, we propose a new LLM-based recommendation model called LC-Rec, which can better integrate language and collaborative semantics for recommender systems. Our approach can directly generate items from the entire item set for recommendation, without relying on candidate items. Specifically, we make two major contributions in our approach. For item indexing, we design a learning-based vector quantization method with uniform semantic mapping, which can assign meaningful and non-conflicting IDs (called item indices) for items. For alignment tuning, we propose a series of specially designed tuning tasks to enhance the integration of collaborative semantics in LLMs. Our fine-tuning tasks enforce LLMs to deeply integrate language and collaborative semantics (characterized by the learned item indices), so as to achieve an effective adaptation to recommender systems. Extensive experiments demonstrate the effectiveness of our method, showing that our approach can outperform a number of competitive baselines including traditional recommenders and existing LLM-based recommenders. Our code is available at https://github.com/RUCAIBox/LC-Rec/.
Abstract:Though significant progress in human pose and shape recovery from monocular RGB images has been made in recent years, obtaining 3D human motion with high accuracy and temporal consistency from videos remains challenging. Existing video-based methods tend to reconstruct human motion from global image features, which lack detailed representation capability and limit the reconstruction accuracy. In this paper, we propose a Temporal-Aware Refining Network (TAR), to synchronously explore temporal-aware global and local image features for accurate pose and shape recovery. First, a global transformer encoder is introduced to obtain temporal global features from static feature sequences. Second, a bidirectional ConvGRU network takes the sequence of high-resolution feature maps as input, and outputs temporal local feature maps that maintain high resolution and capture the local motion of the human body. Finally, a recurrent refinement module iteratively updates estimated SMPL parameters by leveraging both global and local temporal information to achieve accurate and smooth results. Extensive experiments demonstrate that our TAR obtains more accurate results than previous state-of-the-art methods on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.