Abstract:Many studies utilize dual-pixel (DP) sensor phase characteristics for various applications, such as depth estimation and deblurring. However, since the DP image features are entirely determined by the camera hardware, DP-depth paired datasets are very scarce, especially when performing depth estimation on customized cameras. To overcome this, studies simulate DP images using ideal optical system models. However, these simulations often violate real optical propagation laws,leading to poor generalization to real DP data. To address this, we investigate the domain gap between simulated and real DP data, and propose solutions using the Simulating DP images from ray tracing (Sdirt) scheme. The Sdirt generates realistic DP images via ray tracing and integrates them into the depth estimation training pipeline. Experimental results show that models trained with Sdirt-simulated images generalize better to real DP data.
Abstract:The recently unprecedented advancements in Large Language Models (LLMs) have propelled the medical community by establishing advanced medical-domain models. However, due to the limited collection of medical datasets, there are only a few comprehensive benchmarks available to gauge progress in this area. In this paper, we introduce a new medical question-answering (QA) dataset that contains massive manual instruction for solving Traditional Chinese Medicine examination tasks, called TCMD. Specifically, our TCMD collects massive questions across diverse domains with their annotated medical subjects and thus supports us in comprehensively assessing the capability of LLMs in the TCM domain. Extensive evaluation of various general LLMs and medical-domain-specific LLMs is conducted. Moreover, we also analyze the robustness of current LLMs in solving TCM QA tasks by introducing randomness. The inconsistency of the experimental results also reveals the shortcomings of current LLMs in solving QA tasks. We also expect that our dataset can further facilitate the development of LLMs in the TCM area.