Abstract:As AI models expand in size, it has become increasingly challenging to deploy federated learning (FL) on resource-constrained edge devices. To tackle this issue, split federated learning (SFL) has emerged as an FL framework with reduced workload on edge devices via model splitting; it has received extensive attention from the research community in recent years. Nevertheless, most prior works on SFL focus only on a two-tier architecture without harnessing multi-tier cloudedge computing resources. In this paper, we intend to analyze and optimize the learning performance of SFL under multi-tier systems. Specifically, we propose the hierarchical SFL (HSFL) framework and derive its convergence bound. Based on the theoretical results, we formulate a joint optimization problem for model splitting (MS) and model aggregation (MA). To solve this rather hard problem, we then decompose it into MS and MA subproblems that can be solved via an iterative descending algorithm. Simulation results demonstrate that the tailored algorithm can effectively optimize MS and MA for SFL within virtually any multi-tier system.
Abstract:The advent of large language models (LLMs) has significantly propelled the advancement of Role-Playing Agents (RPAs). However, current Role-Playing Agents predominantly focus on mimicking a character's fundamental attributes while neglecting the replication of linguistic style, and they are incapable of effectively replicating characters when performing tasks beyond multi-turn dialogues, which results in generated responses that lack authenticity. The reason current RPAs lack this capability is due to the nature of existing character datasets, which lack collections of character quotations and are limited to multi-turn dialogue tasks, constraining the RPA's performance across other task domains and failing to mimic a character's linguistic style. To address this gap, we developed a multi-task role-playing dataset named MRstyle, which encompasses a substantial number of real individuals along with their quotations and covers seven different tasks. On this basis, we develop StyleRPA, a Multi-Task Role-Playing Agent (MRPA) that significantly outperforms recent open-source LLMs and RPAs baselines on 7 tasks including Dialogue, Dictionary, Composition, Story Generation, Product Description, Music Commentary, and Open Question Answering. The code and data will be released.
Abstract:The remarkable development of text-to-image generation models has raised notable security concerns, such as the infringement of portrait rights and the generation of inappropriate content. Concept erasure has been proposed to remove the model's knowledge about protected and inappropriate concepts. Although many methods have tried to balance the efficacy (erasing target concepts) and specificity (retaining irrelevant concepts), they can still generate abundant erasure concepts under the steering of semantically related inputs. In this work, we propose RealEra to address this "concept residue" issue. Specifically, we first introduce the mechanism of neighbor-concept mining, digging out the associated concepts by adding random perturbation into the embedding of erasure concept, thus expanding the erasing range and eliminating the generations even through associated concept inputs. Furthermore, to mitigate the negative impact on the generation of irrelevant concepts caused by the expansion of erasure scope, RealEra preserves the specificity through the beyond-concept regularization. This makes irrelevant concepts maintain their corresponding spatial position, thereby preserving their normal generation performance. We also employ the closed-form solution to optimize weights of U-Net for the cross-attention alignment, as well as the prediction noise alignment with the LoRA module. Extensive experiments on multiple benchmarks demonstrate that RealEra outperforms previous concept erasing methods in terms of superior erasing efficacy, specificity, and generality. More details are available on our project page https://realerasing.github.io/RealEra/ .
Abstract:Recently, in-car monitoring has emerged as a promising technology for detecting early-stage abnormal status of the driver and providing timely alerts to prevent traffic accidents. Although training models with multimodal data enhances the reliability of abnormal status detection, the scarcity of labeled data and the imbalance of class distribution impede the extraction of critical abnormal state features, significantly deteriorating training performance. Furthermore, missing modalities due to environment and hardware limitations further exacerbate the challenge of abnormal status identification. More importantly, monitoring abnormal health conditions of passengers, particularly in elderly care, is of paramount importance but remains underexplored. To address these challenges, we introduce our IC3M, an efficient camera-rotation-based multimodal framework for monitoring both driver and passengers in a car. Our IC3M comprises two key modules: an adaptive threshold pseudo-labeling strategy and a missing modality reconstruction. The former customizes pseudo-labeling thresholds for different classes based on the class distribution, generating class-balanced pseudo labels to guide model training effectively, while the latter leverages crossmodality relationships learned from limited labels to accurately recover missing modalities by distribution transferring from available modalities. Extensive experimental results demonstrate that IC3M outperforms state-of-the-art benchmarks in accuracy, precision, and recall while exhibiting superior robustness under limited labeled data and severe missing modality.
Abstract:The storage and recall of factual associations in auto-regressive transformer language models (LMs) have drawn a great deal of attention, inspiring knowledge editing by directly modifying the located model weights. Most editing works achieve knowledge editing under the guidance of existing interpretations of knowledge recall that mainly focus on subject knowledge. However, these interpretations are seriously flawed, neglecting relation information and leading to the over-generalizing problem for editing. In this work, we discover a novel relation-focused perspective to interpret the knowledge recall of transformer LMs during inference and apply it on knowledge editing to avoid over-generalizing. Experimental results on the dataset supplemented with a new R-Specificity criterion demonstrate that our editing approach significantly alleviates over-generalizing while remaining competitive on other criteria, breaking the domination of subject-focused editing for future research.
Abstract:Throughout rapid development of multimodal large language models, a crucial ingredient is a fair and accurate evaluation of their multimodal comprehension abilities. Although Visual Question Answering (VQA) could serve as a developed test field, limitations of VQA evaluation, like the inflexible pattern of Exact Match, have hindered MLLMs from demonstrating their real capability and discourage rich responses. Therefore, this paper proposes the use of semantics-based evaluators for assessing unconstrained open-ended responses on VQA datasets. As characteristics of VQA have made such evaluation significantly different than the traditional Semantic Textual Similarity (STS) task, to systematically analyze the behaviour and compare the performance of various evaluators including LLM-based ones, we proposes three key properties, i.e., Alignment, Consistency and Generalization, and a corresponding dataset Assessing VQA Evaluators (AVE) to facilitate analysis. In addition, this paper proposes a Semantically Flexible VQA Evaluator (SFVE) with meticulous design based on the unique features of VQA evaluation. Experimental results verify the feasibility of model-based VQA evaluation and effectiveness of the proposed evaluator that surpasses existing semantic evaluators by a large margin. The proposed training scheme generalizes to both the BERT-like encoders and decoder-only LLM.
Abstract:MLLMs often generate outputs that are inconsistent with the visual content, a challenge known as hallucination. Previous methods focus on determining whether a generated output is hallucinated, without identifying which image region leads to the hallucination or interpreting why such hallucinations occur. In this paper, we argue that hallucination in MLLMs is partially due to a lack of slow-thinking and divergent-thinking in these models. To address this, we propose adopting a self-reflection scheme to promote slow-thinking. Furthermore, we consider eliminating hallucination as a complex reasoning task and propose a multi-agent debate approach to encourage divergent-thinking. Consequently, our approach can not only mitigate hallucinations but also interpret why they occur and detail the specifics of hallucination. In addition, we propose to distinguish creativity from hallucination in the context of MLLMs, and illustrate how to evaluate MLLMs' creativity capability. Extensive experiments on various benchmarks demonstrate that our approach exhibits generalized hallucinations-mitigating performance across several MLLMs.
Abstract:Model inversion (MI) attack reconstructs the private training data of a target model given its output, posing a significant threat to deep learning models and data privacy. On one hand, most of existing MI methods focus on searching for latent codes to represent the target identity, yet this iterative optimization-based scheme consumes a huge number of queries to the target model, making it unrealistic especially in black-box scenario. On the other hand, some training-based methods launch an attack through a single forward inference, whereas failing to directly learn high-level mappings from prediction vectors to images. Addressing these limitations, we propose a novel Prediction-to-Image (P2I) method for black-box MI attack. Specifically, we introduce the Prediction Alignment Encoder to map the target model's output prediction into the latent code of StyleGAN. In this way, prediction vector space can be well aligned with the more disentangled latent space, thus establishing a connection between prediction vectors and the semantic facial features. During the attack phase, we further design the Aligned Ensemble Attack scheme to integrate complementary facial attributes of target identity for better reconstruction. Experimental results show that our method outperforms other SOTAs, e.g.,compared with RLB-MI, our method improves attack accuracy by 8.5% and reduces query numbers by 99% on dataset CelebA.
Abstract:Grounding external knowledge can enhance the factuality of responses in dialogue generation. However, excessive emphasis on it might result in the lack of engaging and diverse expressions. Through the introduction of randomness in sampling, current approaches can increase the diversity. Nevertheless, such sampling method could undermine the factuality in dialogue generation. In this study, to discover a solution for advancing creativity without relying on questionable randomness and to subtly reconcile the factuality and diversity within the source-grounded paradigm, a novel method named DoGe is proposed. DoGe can dynamically alternate between the utilization of internal parameter knowledge and external source knowledge based on the model's factual confidence. Extensive experiments on three widely-used datasets show that DoGe can not only enhance response diversity but also maintain factuality, and it significantly surpasses other various decoding strategy baselines.
Abstract:Structured pruning fundamentally reduces computational and memory overheads of large language models (LLMs) and offers a feasible solution for end-side LLM deployment. Structurally pruned models remain dense and high-precision, highly compatible with further tuning and compression. However, as the coarse-grained structured pruning poses large damage to the highly interconnected model, achieving a high compression ratio for scaled-up LLMs remains a challenge. In this paper, we introduce a task-agnostic structured pruning approach coupled with a compact Transformer architecture design. The proposed approach, named TransAct, reduces transitional activations inside multi-head attention (MHA) and multi-layer perceptron (MLP) modules, while preserving the inter-module activations that are sensitive to perturbations. Hence, the LLM is pruned into an intra-module low-rank architecture, significantly reducing weights, KV Cache and attention computation. TransAct is implemented on the LLaMA model and evaluated on downstream benchmarks. Results verify the optimality of our approach at high compression with respect to both efficiency and performance. Further, ablation studies reveal the strength of activation-guided iterative pruning and provide experimental analysis on the redundancy of MHA and MLP modules.