Abstract:Abstract. Automatically generating scientific literature surveys is a valuable task that can significantly enhance research efficiency. However, the diverse and complex nature of information within a literature survey poses substantial challenges for generative models. In this paper, we design a series of prompts to systematically leverage large language models (LLMs), enabling the creation of comprehensive literature surveys through a step-by-step approach. Specifically, we design prompts to guide LLMs to sequentially generate the title, abstract, hierarchical headings, and the main content of the literature survey. We argue that this design enables the generation of the headings from a high-level perspective. During the content generation process, this design effectively harnesses relevant information while minimizing costs by restricting the length of both input and output content in LLM queries. Our implementation with Qwen-long achieved third place in the NLPCC 2024 Scientific Literature Survey Generation evaluation task, with an overall score only 0.03% lower than the second-place team. Additionally, our soft heading recall is 95.84%, the second best among the submissions. Thanks to the efficient prompt design and the low cost of the Qwen-long API, our method reduces the expense for generating each literature survey to 0.1 RMB, enhancing the practical value of our method.
Abstract:Generative recommendation has emerged as a promising paradigm aimed at augmenting recommender systems with recent advancements in generative artificial intelligence. This task has been formulated as a sequence-to-sequence generation process, wherein the input sequence encompasses data pertaining to the user's previously interacted items, and the output sequence denotes the generative identifier for the suggested item. However, existing generative recommendation approaches still encounter challenges in (i) effectively integrating user-item collaborative signals and item content information within a unified generative framework, and (ii) executing an efficient alignment between content information and collaborative signals. In this paper, we introduce content-based collaborative generation for recommender systems, denoted as ColaRec. To capture collaborative signals, the generative item identifiers are derived from a pretrained collaborative filtering model, while the user is represented through the aggregation of interacted items' content. Subsequently, the aggregated textual description of items is fed into a language model to encapsulate content information. This integration enables ColaRec to amalgamate collaborative signals and content information within an end-to-end framework. Regarding the alignment, we propose an item indexing task to facilitate the mapping between the content-based semantic space and the interaction-based collaborative space. Additionally, a contrastive loss is introduced to ensure that items with similar collaborative GIDs possess comparable content representations, thereby enhancing alignment. To validate the efficacy of ColaRec, we conduct experiments on three benchmark datasets. Empirical results substantiate the superior performance of ColaRec.
Abstract:Sequential recommendation (SR) models are typically trained on user-item interactions which are affected by the system exposure bias, leading to the user preference learned from the biased SR model not being fully consistent with the true user preference. Exposure bias refers to the fact that user interactions are dependent upon the partial items exposed to the user. Existing debiasing methods do not make full use of the system exposure data and suffer from sub-optimal recommendation performance and high variance. In this paper, we propose to debias sequential recommenders through Distributionally Robust Optimization (DRO) over system exposure data. The key idea is to utilize DRO to optimize the worst-case error over an uncertainty set to safeguard the model against distributional discrepancy caused by the exposure bias. The main challenge to apply DRO for exposure debiasing in SR lies in how to construct the uncertainty set and avoid the overestimation of user preference on biased samples. Moreover, how to evaluate the debiasing effect on biased test set is also an open question. To this end, we first introduce an exposure simulator trained upon the system exposure data to calculate the exposure distribution, which is then regarded as the nominal distribution to construct the uncertainty set of DRO. Then, we introduce a penalty to items with high exposure probability to avoid the overestimation of user preference for biased samples. Finally, we design a debiased self-normalized inverse propensity score (SNIPS) evaluator for evaluating the debiasing effect on the biased offline test set. We conduct extensive experiments on two real-world datasets to verify the effectiveness of the proposed methods. Experimental results demonstrate the superior exposure debiasing performance of proposed methods. Codes and data are available at \url{https://github.com/nancheng58/DebiasedSR_DRO}.
Abstract:Learning reinforcement learning (RL)-based recommenders from historical user-item interaction sequences is vital to generate high-reward recommendations and improve long-term cumulative benefits. However, existing RL recommendation methods encounter difficulties (i) to estimate the value functions for states which are not contained in the offline training data, and (ii) to learn effective state representations from user implicit feedback due to the lack of contrastive signals. In this work, we propose contrastive state augmentations (CSA) for the training of RL-based recommender systems. To tackle the first issue, we propose four state augmentation strategies to enlarge the state space of the offline data. The proposed method improves the generalization capability of the recommender by making the RL agent visit the local state regions and ensuring the learned value functions are similar between the original and augmented states. For the second issue, we propose introducing contrastive signals between augmented states and the state randomly sampled from other sessions to improve the state representation learning further. To verify the effectiveness of the proposed CSA, we conduct extensive experiments on two publicly accessible datasets and one dataset collected from a real-life e-commerce platform. We also conduct experiments on a simulated environment as the online evaluation setting. Experimental results demonstrate that CSA can effectively improve recommendation performance.