Abstract:Omni-modal Large Language Models (Omni-LLMs) have demonstrated strong capabilities in audio-video understanding tasks. However, their reliance on long multimodal token sequences leads to substantial computational overhead. Despite this challenge, token compression methods designed for Omni-LLMs remain limited. To bridge this gap, we propose OmniSIFT (Omni-modal Spatio-temporal Informed Fine-grained Token compression), a modality-asymmetric token compression framework tailored for Omni-LLMs. Specifically, OmniSIFT adopts a two-stage compression strategy: (i) a spatio-temporal video pruning module that removes video redundancy arising from both intra-frame structure and inter-frame overlap, and (ii) a vision-guided audio selection module that filters audio tokens. The entire framework is optimized end-to-end via a differentiable straight-through estimator. Extensive experiments on five representative benchmarks demonstrate the efficacy and robustness of OmniSIFT. Notably, for Qwen2.5-Omni-7B, OmniSIFT introduces only 4.85M parameters while maintaining lower latency than training-free baselines such as OmniZip. With merely 25% of the original token context, OmniSIFT consistently outperforms all compression baselines and even surpasses the performance of the full-token model on several tasks.
Abstract:Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
Abstract:World models have emerged as a critical frontier in AI research, aiming to enhance large models by infusing them with physical dynamics and world knowledge. The core objective is to enable agents to understand, predict, and interact with complex environments. However, current research landscape remains fragmented, with approaches predominantly focused on injecting world knowledge into isolated tasks, such as visual prediction, 3D estimation, or symbol grounding, rather than establishing a unified definition or framework. While these task-specific integrations yield performance gains, they often lack the systematic coherence required for holistic world understanding. In this paper, we analyze the limitations of such fragmented approaches and propose a unified design specification for world models. We suggest that a robust world model should not be a loose collection of capabilities but a normative framework that integrally incorporates interaction, perception, symbolic reasoning, and spatial representation. This work aims to provide a structured perspective to guide future research toward more general, robust, and principled models of the world.
Abstract:Accurate dialogue description in audiovisual video captioning is crucial for downstream understanding and generation tasks. However, existing models generally struggle to produce faithful dialogue descriptions within audiovisual captions. To mitigate this limitation, we propose DiaDem, a powerful audiovisual video captioning model capable of generating captions with more precise dialogue descriptions while maintaining strong overall performance. We first synthesize a high-quality dataset for SFT, then employ a difficulty-partitioned two-stage GRPO strategy to further enhance dialogue descriptions. To enable systematic evaluation of dialogue description capabilities, we introduce DiaDemBench, a comprehensive benchmark designed to evaluate models across diverse dialogue scenarios, emphasizing both speaker attribution accuracy and utterance transcription fidelity in audiovisual captions. Extensive experiments on DiaDemBench reveal even commercial models still exhibit substantial room for improvement in dialogue-aware captioning. Notably, DiaDem not only outperforms the Gemini series in dialogue description accuracy but also achieves competitive performance on general audiovisual captioning benchmarks, demonstrating its overall effectiveness.
Abstract:Offline Reinforcement Learning (RL) enables policy optimization from static datasets but is inherently vulnerable to backdoor attacks. Existing attack strategies typically struggle against safety-constrained algorithms (e.g., CQL) due to inefficient random poisoning and the use of easily detectable Out-of-Distribution (OOD) triggers. In this paper, we propose CS-GBA (Critical Sample-based Gradient-guided Backdoor Attack), a novel framework designed to achieve high stealthiness and destructiveness under a strict budget. Leveraging the theoretical insight that samples with high Temporal Difference (TD) errors are pivotal for value function convergence, we introduce an adaptive Critical Sample Selection strategy that concentrates the attack budget on the most influential transitions. To evade OOD detection, we propose a Correlation-Breaking Trigger mechanism that exploits the physical mutual exclusivity of state features (e.g., 95th percentile boundaries) to remain statistically concealed. Furthermore, we replace the conventional label inversion with a Gradient-Guided Action Generation mechanism, which searches for worst-case actions within the data manifold using the victim Q-network's gradient. Empirical results on D4RL benchmarks demonstrate that our method significantly outperforms state-of-the-art baselines, achieving high attack success rates against representative safety-constrained algorithms with a minimal 5% poisoning budget, while maintaining the agent's performance in clean environments.
Abstract:CT reconstruction provides radiologists with images for diagnosis and treatment, yet current deep learning methods are typically limited to specific anatomies and datasets, hindering generalization ability to unseen anatomies and lesions. To address this, we introduce the Multi-Organ medical image REconstruction (MORE) dataset, comprising CT scans across 9 diverse anatomies with 15 lesion types. This dataset serves two key purposes: (1) enabling robust training of deep learning models on extensive, heterogeneous data, and (2) facilitating rigorous evaluation of model generalization for CT reconstruction. We further establish a strong baseline solution that outperforms prior approaches under these challenging conditions. Our results demonstrate that: (1) a comprehensive dataset helps improve the generalization capability of models, and (2) optimization-based methods offer enhanced robustness for unseen anatomies. The MORE dataset is freely accessible under CC-BY-NC 4.0 at our project page https://more-med.github.io/
Abstract:Nowadays, Large Language Models (LLMs) have attracted widespread attention due to their powerful performance. However, due to the unavoidable exposure to socially biased data during training, LLMs tend to exhibit social biases, particularly gender bias. To better explore and quantifying the degree of gender bias in LLMs, we propose a pair of datasets named GenBiasEval and GenHintEval, respectively. The GenBiasEval is responsible for evaluating the degree of gender bias in LLMs, accompanied by an evaluation metric named AFGB-Score (Absolutely Fair Gender Bias Score). Meanwhile, the GenHintEval is used to assess whether LLMs can provide responses consistent with prompts that contain gender hints, along with the accompanying evaluation metric UB-Score (UnBias Score). Besides, in order to mitigate gender bias in LLMs more effectively, we present the LFTF (Locating First and Then Fine-Tuning) algorithm.The algorithm first ranks specific LLM blocks by their relevance to gender bias in descending order using a metric called BMI (Block Mitigating Importance Score). Based on this ranking, the block most strongly associated with gender bias is then fine-tuned using a carefully designed loss function. Numerous experiments have shown that our proposed LFTF algorithm can significantly mitigate gender bias in LLMs while maintaining their general capabilities.
Abstract:Continual Learning (CL) strives to learn incrementally across tasks while mitigating catastrophic forgetting. A key challenge in CL is balancing stability (retaining prior knowledge) and plasticity (learning new tasks). While representative gradient projection methods ensure stability, they often limit plasticity. Model merging techniques offer promising solutions, but prior methods typically rely on empirical assumptions and carefully selected hyperparameters. In this paper, we explore the potential of model merging to enhance the stability-plasticity trade-off, providing theoretical insights that underscore its benefits. Specifically, we reformulate the merging mechanism using Bayesian continual learning principles and derive a closed-form solution for the optimal merging coefficient that adapts to the diverse characteristics of tasks. To validate our approach, we introduce a two-stage framework named BECAME, which synergizes the expertise of gradient projection and adaptive merging. Extensive experiments show that our approach outperforms state-of-the-art CL methods and existing merging strategies.




Abstract:Generative models have recently gained attention in recommendation systems by directly predicting item identifiers from user interaction sequences. However, existing methods suffer from significant information loss due to the separation of stages such as quantization and sequence modeling, hindering their ability to achieve the modeling precision and accuracy of sequential dense retrieval techniques. Integrating generative and dense retrieval methods remains a critical challenge. To address this, we introduce the Cascaded Organized Bi-Represented generAtive retrieval (COBRA) framework, which innovatively integrates sparse semantic IDs and dense vectors through a cascading process. Our method alternates between generating these representations by first generating sparse IDs, which serve as conditions to aid in the generation of dense vectors. End-to-end training enables dynamic refinement of dense representations, capturing both semantic insights and collaborative signals from user-item interactions. During inference, COBRA employs a coarse-to-fine strategy, starting with sparse ID generation and refining them into dense vectors via the generative model. We further propose BeamFusion, an innovative approach combining beam search with nearest neighbor scores to enhance inference flexibility and recommendation diversity. Extensive experiments on public datasets and offline tests validate our method's robustness. Online A/B tests on a real-world advertising platform with over 200 million daily users demonstrate substantial improvements in key metrics, highlighting COBRA's practical advantages.
Abstract:Multi-modal recommender systems (MMRS) have gained significant attention due to their ability to leverage information from various modalities to enhance recommendation quality. However, existing negative sampling techniques often struggle to effectively utilize the multi-modal data, leading to suboptimal performance. In this paper, we identify two key challenges in negative sampling for MMRS: (1) producing cohesive negative samples contrasting with positive samples and (2) maintaining a balanced influence across different modalities. To address these challenges, we propose NegGen, a novel framework that utilizes multi-modal large language models (MLLMs) to generate balanced and contrastive negative samples. We design three different prompt templates to enable NegGen to analyze and manipulate item attributes across multiple modalities, and then generate negative samples that introduce better supervision signals and ensure modality balance. Furthermore, NegGen employs a causal learning module to disentangle the effect of intervened key features and irrelevant item attributes, enabling fine-grained learning of user preferences. Extensive experiments on real-world datasets demonstrate the superior performance of NegGen compared to state-of-the-art methods in both negative sampling and multi-modal recommendation.