Abstract:Generative models have recently gained attention in recommendation systems by directly predicting item identifiers from user interaction sequences. However, existing methods suffer from significant information loss due to the separation of stages such as quantization and sequence modeling, hindering their ability to achieve the modeling precision and accuracy of sequential dense retrieval techniques. Integrating generative and dense retrieval methods remains a critical challenge. To address this, we introduce the Cascaded Organized Bi-Represented generAtive retrieval (COBRA) framework, which innovatively integrates sparse semantic IDs and dense vectors through a cascading process. Our method alternates between generating these representations by first generating sparse IDs, which serve as conditions to aid in the generation of dense vectors. End-to-end training enables dynamic refinement of dense representations, capturing both semantic insights and collaborative signals from user-item interactions. During inference, COBRA employs a coarse-to-fine strategy, starting with sparse ID generation and refining them into dense vectors via the generative model. We further propose BeamFusion, an innovative approach combining beam search with nearest neighbor scores to enhance inference flexibility and recommendation diversity. Extensive experiments on public datasets and offline tests validate our method's robustness. Online A/B tests on a real-world advertising platform with over 200 million daily users demonstrate substantial improvements in key metrics, highlighting COBRA's practical advantages.
Abstract:In the multimedia era, image is an effective medium in search advertising. Dynamic Image Advertising (DIA), a system that matches queries with ad images and generates multimodal ads, is introduced to improve user experience and ad revenue. The core of DIA is a query-image matching module performing ad image retrieval and relevance modeling. Current query-image matching suffers from limited and inconsistent data, and insufficient cross-modal interaction. Also, the separate optimization of retrieval and relevance models affects overall performance. To address this issue, we propose a vision-language framework consisting of two parts. First, we train a base model on large-scale image-text pairs to learn general multimodal representation. Then, we fine-tune the base model on advertising business data, unifying relevance modeling and retrieval through multi-objective learning. Our framework has been implemented in Baidu search advertising system "Phoneix Nest". Online evaluation shows that it improves cost per mille (CPM) and click-through rate (CTR) by 1.04% and 1.865%.