Nanyang Technological University Singapore
Abstract:The advent of stereoscopic videos has opened new horizons in multimedia, particularly in extended reality (XR) and virtual reality (VR) applications, where immersive content captivates audiences across various platforms. Despite its growing popularity, producing stereoscopic videos remains challenging due to the technical complexities involved in generating stereo parallax. This refers to the positional differences of objects viewed from two distinct perspectives and is crucial for creating depth perception. This complex process poses significant challenges for creators aiming to deliver convincing and engaging presentations. To address these challenges, this paper introduces the Text-driven Stereoscopic Video Generation (T-SVG) system. This innovative, model-agnostic, zero-shot approach streamlines video generation by using text prompts to create reference videos. These videos are transformed into 3D point cloud sequences, which are rendered from two perspectives with subtle parallax differences, achieving a natural stereoscopic effect. T-SVG represents a significant advancement in stereoscopic content creation by integrating state-of-the-art, training-free techniques in text-to-video generation, depth estimation, and video inpainting. Its flexible architecture ensures high efficiency and user-friendliness, allowing seamless updates with newer models without retraining. By simplifying the production pipeline, T-SVG makes stereoscopic video generation accessible to a broader audience, demonstrating its potential to revolutionize the field.
Abstract:Large language models (LLMs) based on the Transformer architecture are widely employed across various domains and tasks. However, their increasing size imposes significant hardware demands, limiting practical deployment. To mitigate this, model pruning techniques have been developed to create more efficient models while maintaining high performance. Despite this, post-training after pruning is crucial for performance recovery and can be resource-intensive. This paper investigates the post-training requirements of pruned LLMs and introduces a scaling law to determine the optimal amount of post-training data. Post-training experiments with the Llama-3 and Qwen-2.5 series models, pruned using depth pruning, width pruning, and 2:4 semi-structured pruning, show that higher pruning ratios necessitate more post-training data for performance recovery, whereas larger LLMs require less. The proposed scaling law predicts a model's loss based on its parameter counts before and after pruning, as well as the post-training token counts. Furthermore, we find that the scaling law established from smaller LLMs can be reliably extrapolated to larger LLMs. This work provides valuable insights into the post-training of pruned LLMs and offers a practical scaling law for optimizing post-training data usage.
Abstract:Human motion capture is the foundation for many computer vision and graphics tasks. While industrial motion capture systems with complex camera arrays or expensive wearable sensors have been widely adopted in movie and game production, consumer-affordable and easy-to-use solutions for personal applications are still far from mature. To utilize a mixture of a monocular camera and very few inertial measurement units (IMUs) for accurate multi-modal human motion capture in daily life, we contribute MINIONS in this paper, a large-scale Motion capture dataset collected from INertial and visION Sensors. MINIONS has several featured properties: 1) large scale of over five million frames and 400 minutes duration; 2) multi-modality data of IMUs signals and RGB videos labeled with joint positions, joint rotations, SMPL parameters, etc.; 3) a diverse set of 146 fine-grained single and interactive actions with textual descriptions. With the proposed MINIONS, we conduct experiments on multi-modal motion capture and explore the possibilities of consumer-affordable motion capture using a monocular camera and very few IMUs. The experiment results emphasize the unique advantages of inertial and vision sensors, showcasing the promise of consumer-affordable multi-modal motion capture and providing a valuable resource for further research and development.
Abstract:Conventional industrial robots often use two-fingered grippers or suction cups to manipulate objects or interact with the world. Because of their simplified design, they are unable to reproduce the dexterity of human hands when manipulating a wide range of objects. While the control of humanoid hands evolved greatly, hardware platforms still lack capabilities, particularly in tactile sensing and providing soft contact surfaces. In this work, we present a method that equips the skeleton of a tendon-driven humanoid hand with a soft and sensorized tactile skin. Multi-material 3D printing allows us to iteratively approach a cast skin design which preserves the robot's dexterity in terms of range of motion and speed. We demonstrate that a soft skin enables firmer grasps and piezoresistive sensor integration enhances the hand's tactile sensing capabilities.
Abstract:Large language models (LLM) have been extensively applied in various natural language tasks and domains, but their applicability is constrained by the large number of parameters of the models. Consequently, there is an increasing emphasis on compact models that exhibit high performance. In this study, we observe that different layers in LLM have varying degrees of perturbation on the hidden states, which allows us to identify less important layers. Based on this phenomenon, we propose LLM-Streamline, which consists of two parts: layer pruning, where we remove a set of consecutive layers with the lowest importance in the model according to the target sparsity; and layer replacement, where we train a lightweight model to substitute the pruned layers, thereby mitigating the performance degradation caused by pruning. In our experiments, we utilize structures such as a multi-layer perceptron (MLP) and a transformer layer as lightweight models and ultimately demonstrate that a single MLP can effectively fit the pruned layers. Comprehensive experiments show that our proposed method, LLM-Streamline, outperforms previous state-of-the-art (SOTA) model pruning methods.
Abstract:Recent text-to-video diffusion models have achieved impressive progress. In practice, users often desire the ability to control object motion and camera movement independently for customized video creation. However, current methods lack the focus on separately controlling object motion and camera movement in a decoupled manner, which limits the controllability and flexibility of text-to-video models. In this paper, we introduce Direct-a-Video, a system that allows users to independently specify motions for one or multiple objects and/or camera movements, as if directing a video. We propose a simple yet effective strategy for the decoupled control of object motion and camera movement. Object motion is controlled through spatial cross-attention modulation using the model's inherent priors, requiring no additional optimization. For camera movement, we introduce new temporal cross-attention layers to interpret quantitative camera movement parameters. We further employ an augmentation-based approach to train these layers in a self-supervised manner on a small-scale dataset, eliminating the need for explicit motion annotation. Both components operate independently, allowing individual or combined control, and can generalize to open-domain scenarios. Extensive experiments demonstrate the superiority and effectiveness of our method. Project page: https://direct-a-video.github.io/.
Abstract:Qualifying the discrepancy between 3D geometric models, which could be represented with either point clouds or triangle meshes, is a pivotal issue with board applications. Existing methods mainly focus on directly establishing the correspondence between two models and then aggregating point-wise distance between corresponding points, resulting in them being either inefficient or ineffective. In this paper, we propose DirDist, an efficient, effective, robust, and differentiable distance metric for 3D geometry data. Specifically, we construct DirDist based on the proposed implicit representation of 3D models, namely directional distance field (DDF), which defines the directional distances of 3D points to a model to capture its local surface geometry. We then transfer the discrepancy between two 3D geometric models as the discrepancy between their DDFs defined on an identical domain, naturally establishing model correspondence. To demonstrate the advantage of our DirDist, we explore various distance metric-driven 3D geometric modeling tasks, including template surface fitting, rigid registration, non-rigid registration, scene flow estimation and human pose optimization. Extensive experiments show that our DirDist achieves significantly higher accuracy under all tasks. As a generic distance metric, DirDist has the potential to advance the field of 3D geometric modeling. The source code is available at \url{https://github.com/rsy6318/DirDist}.
Abstract:Recently, text-to-image denoising diffusion probabilistic models (DDPMs) have demonstrated impressive image generation capabilities and have also been successfully applied to image inpainting. However, in practice, users often require more control over the inpainting process beyond textual guidance, especially when they want to composite objects with customized appearance, color, shape, and layout. Unfortunately, existing diffusion-based inpainting methods are limited to single-modal guidance and require task-specific training, hindering their cross-modal scalability. To address these limitations, we propose Uni-paint, a unified framework for multimodal inpainting that offers various modes of guidance, including unconditional, text-driven, stroke-driven, exemplar-driven inpainting, as well as a combination of these modes. Furthermore, our Uni-paint is based on pretrained Stable Diffusion and does not require task-specific training on specific datasets, enabling few-shot generalizability to customized images. We have conducted extensive qualitative and quantitative evaluations that show our approach achieves comparable results to existing single-modal methods while offering multimodal inpainting capabilities not available in other methods. Code will be available at https://github.com/ysy31415/unipaint.
Abstract:In the multimedia era, image is an effective medium in search advertising. Dynamic Image Advertising (DIA), a system that matches queries with ad images and generates multimodal ads, is introduced to improve user experience and ad revenue. The core of DIA is a query-image matching module performing ad image retrieval and relevance modeling. Current query-image matching suffers from limited and inconsistent data, and insufficient cross-modal interaction. Also, the separate optimization of retrieval and relevance models affects overall performance. To address this issue, we propose a vision-language framework consisting of two parts. First, we train a base model on large-scale image-text pairs to learn general multimodal representation. Then, we fine-tune the base model on advertising business data, unifying relevance modeling and retrieval through multi-objective learning. Our framework has been implemented in Baidu search advertising system "Phoneix Nest". Online evaluation shows that it improves cost per mille (CPM) and click-through rate (CTR) by 1.04% and 1.865%.
Abstract:By leveraging their high mobility and small size, insects have been combined with microcontrollers to build up cyborg insects for various practical applications. Unfortunately, all current cyborg insects rely on implanted electrodes to control their movement, which causes irreversible damage to their organs and muscles. Here, we develop a non-invasive method for cyborg insects to address above issues, using a conformal electrode with an in-situ polymerized ion-conducting layer and an electron-conducting layer. The neural and locomotion responses to the electrical inductions verify the efficient communication between insects and controllers by the non-invasive method. The precise "S" line following of the cyborg insect further demonstrates its potential in practical navigation. The conformal non-invasive electrodes keep the intactness of the insects used while controlling their motion. With the antennae, important olfactory organs of insects preserved, the cyborg insect, in the future, may be endowed with abilities to detect the surrounding environment.