Abstract:Large language models (LLMs) based on the Transformer architecture are widely employed across various domains and tasks. However, their increasing size imposes significant hardware demands, limiting practical deployment. To mitigate this, model pruning techniques have been developed to create more efficient models while maintaining high performance. Despite this, post-training after pruning is crucial for performance recovery and can be resource-intensive. This paper investigates the post-training requirements of pruned LLMs and introduces a scaling law to determine the optimal amount of post-training data. Post-training experiments with the Llama-3 and Qwen-2.5 series models, pruned using depth pruning, width pruning, and 2:4 semi-structured pruning, show that higher pruning ratios necessitate more post-training data for performance recovery, whereas larger LLMs require less. The proposed scaling law predicts a model's loss based on its parameter counts before and after pruning, as well as the post-training token counts. Furthermore, we find that the scaling law established from smaller LLMs can be reliably extrapolated to larger LLMs. This work provides valuable insights into the post-training of pruned LLMs and offers a practical scaling law for optimizing post-training data usage.
Abstract:Empathetic response generation is designed to comprehend the emotions of others and select the most appropriate strategies to assist them in resolving emotional challenges. Empathy can be categorized into cognitive empathy and affective empathy. The former pertains to the ability to understand and discern the emotional issues and situations of others, while the latter involves the capacity to provide comfort. To enhance one's empathetic abilities, it is essential to develop both these aspects. Therefore, we develop an innovative framework that combines retrieval augmentation and emotional support strategy integration. Our framework starts with the introduction of a comprehensive emotional palette for empathy. We then apply appraisal theory to decompose this palette and create a database of empathetic responses. This database serves as an external resource and enhances the LLM's empathy by integrating semantic retrieval mechanisms. Moreover, our framework places a strong emphasis on the proper articulation of response strategies. By incorporating emotional support strategies, we aim to enrich the model's capabilities in both cognitive and affective empathy, leading to a more nuanced and comprehensive empathetic response. Finally, we extract datasets ED and ET from the empathetic dialogue dataset \textsc{EmpatheticDialogues} and ExTES based on dialogue length. Experiments demonstrate that our framework can enhance the empathy ability of LLMs from both cognitive and affective empathy perspectives. Our code is released at https://github.com/CAS-SIAT-XinHai/APTNESS.
Abstract:While preference-based recommendation algorithms effectively enhance user engagement by recommending personalized content, they often result in the creation of ``filter bubbles''. These bubbles restrict the range of information users interact with, inadvertently reinforcing their existing viewpoints. Previous research has focused on modifying these underlying algorithms to tackle this issue. Yet, approaches that maintain the integrity of the original algorithms remain largely unexplored. This paper introduces an Agent-based Information Neutrality model grounded in the Yin-Yang theory, namely, AbIN. This innovative approach targets the imbalance in information perception within existing recommendation systems. It is designed to integrate with these preference-based systems, ensuring the delivery of recommendations with neutral information. Our empirical evaluation of this model proved its efficacy, showcasing its capacity to expand information diversity while respecting user preferences. Consequently, AbIN emerges as an instrumental tool in mitigating the negative impact of filter bubbles on information consumption.
Abstract:Large language models (LLM) have been extensively applied in various natural language tasks and domains, but their applicability is constrained by the large number of parameters of the models. Consequently, there is an increasing emphasis on compact models that exhibit high performance. In this study, we observe that different layers in LLM have varying degrees of perturbation on the hidden states, which allows us to identify less important layers. Based on this phenomenon, we propose LLM-Streamline, which consists of two parts: layer pruning, where we remove a set of consecutive layers with the lowest importance in the model according to the target sparsity; and layer replacement, where we train a lightweight model to substitute the pruned layers, thereby mitigating the performance degradation caused by pruning. In our experiments, we utilize structures such as a multi-layer perceptron (MLP) and a transformer layer as lightweight models and ultimately demonstrate that a single MLP can effectively fit the pruned layers. Comprehensive experiments show that our proposed method, LLM-Streamline, outperforms previous state-of-the-art (SOTA) model pruning methods.
Abstract:Despite significant recent progress in the field of autonomous driving, modern methods still struggle and can incur serious accidents when encountering long-tail unforeseen events and challenging urban scenarios. On the one hand, large language models (LLM) have shown impressive reasoning capabilities that approach "Artificial General Intelligence". On the other hand, previous autonomous driving methods tend to rely on limited-format inputs (e.g. sensor data and navigation waypoints), restricting the vehicle's ability to understand language information and interact with humans. To this end, this paper introduces LMDrive, a novel language-guided, end-to-end, closed-loop autonomous driving framework. LMDrive uniquely processes and integrates multi-modal sensor data with natural language instructions, enabling interaction with humans and navigation software in realistic instructional settings. To facilitate further research in language-based closed-loop autonomous driving, we also publicly release the corresponding dataset which includes approximately 64K instruction-following data clips, and the LangAuto benchmark that tests the system's ability to handle complex instructions and challenging driving scenarios. Extensive closed-loop experiments are conducted to demonstrate LMDrive's effectiveness. To the best of our knowledge, we're the very first work to leverage LLMs for closed-loop end-to-end autonomous driving. Codes, models, and datasets can be found at https://github.com/opendilab/LMDrive
Abstract:We propose TCSP, a novel method for compressing a transformer model by focusing on reducing the hidden size of the model. By projecting the whole transform model into a subspace, we enable matrix operations between the weight matrices in the model and features in a reduced-dimensional space, leading to significant reductions in model parameters and computing resources. To establish this subspace, we decompose the feature matrix, derived from different layers of sampled data instances, into a projection matrix. For evaluation, TCSP is applied to compress T5 and BERT models on the GLUE and SQuAD benchmarks. Experimental results demonstrate that TCSP achieves a compression ratio of 44\% with at most 1.6\% degradation in accuracy, surpassing or matching prior compression methods. Furthermore, TCSP exhibits compatibility with other methods targeting filter and attention head size compression.
Abstract:Scene graph generation aims to detect visual relationship triplets, (subject, predicate, object). Due to biases in data, current models tend to predict common predicates, e.g. "on" and "at", instead of informative ones, e.g. "standing on" and "looking at". This tendency results in the loss of precise information and overall performance. If a model only uses "stone on road" rather than "stone blocking road" to describe an image, it may be a grave misunderstanding. We argue that this phenomenon is caused by two imbalances: semantic space level imbalance and training sample level imbalance. For this problem, we propose DB-SGG, an effective framework based on debiasing but not the conventional distribution fitting. It integrates two components: Semantic Debiasing (SD) and Balanced Predicate Learning (BPL), for these imbalances. SD utilizes a confusion matrix and a bipartite graph to construct predicate relationships. BPL adopts a random undersampling strategy and an ambiguity removing strategy to focus on informative predicates. Benefiting from the model-agnostic process, our method can be easily applied to SGG models and outperforms Transformer by 136.3%, 119.5%, and 122.6% on mR@20 at three SGG sub-tasks on the SGG-VG dataset. Our method is further verified on another complex SGG dataset (SGG-GQA) and two downstream tasks (sentence-to-graph retrieval and image captioning).
Abstract:Most end-to-end (E2E) speech recognition models are composed of encoder and decoder blocks that perform acoustic and language modeling functions. Pretrained large language models (LLMs) have the potential to improve the performance of E2E ASR. However, integrating a pretrained language model into an E2E speech recognition model has shown limited benefits due to the mismatches between text-based LLMs and those used in E2E ASR. In this paper, we explore an alternative approach by adapting a pretrained LLMs to speech. Our experiments on fully-formatted E2E ASR transcription tasks across various domains demonstrate that our approach can effectively leverage the strengths of pretrained LLMs to produce more readable ASR transcriptions. Our model, which is based on the pretrained large language models with either an encoder-decoder or decoder-only structure, surpasses strong ASR models such as Whisper, in terms of recognition error rate, considering formats like punctuation and capitalization as well.
Abstract:In the realm of personalized recommendation systems, the increasing concern is the amplification of belief imbalance and user biases, a phenomenon primarily attributed to the filter bubble. Addressing this critical issue, we introduce an innovative intermediate agency (BHEISR) between users and existing recommendation systems to attenuate the negative repercussions of the filter bubble effect in extant recommendation systems. The main objective is to strike a belief balance for users while minimizing the detrimental influence caused by filter bubbles. The BHEISR model amalgamates principles from nudge theory while upholding democratic and transparent principles. It harnesses user-specific category information to stimulate curiosity, even in areas users might initially deem uninteresting. By progressively stimulating interest in novel categories, the model encourages users to broaden their belief horizons and explore the information they typically overlook. Our model is time-sensitive and operates on a user feedback loop. It utilizes the existing recommendation algorithm of the model and incorporates user feedback from the prior time frame. This approach endeavors to transcend the constraints of the filter bubble, enrich recommendation diversity, and strike a belief balance among users while also catering to user preferences and system-specific business requirements. To validate the effectiveness and reliability of the BHEISR model, we conducted a series of comprehensive experiments with real-world datasets. These experiments compared the performance of the BHEISR model against several baseline models using nearly 200 filter bubble-impacted users as test subjects. Our experimental results conclusively illustrate the superior performance of the BHEISR model in mitigating filter bubbles and balancing user perspectives.
Abstract:Myocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the US. The morbidity and mortality are highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock is critical. Prompt implementation of treatment measures can prevent the deleterious spiral of ischemia, low blood pressure, and reduced cardiac output due to cardiogenic shock. However, early identification of cardiogenic shock has been challenging due to human providers' inability to process the enormous amount of data in the cardiac intensive care unit (ICU) and lack of an effective risk stratification tool. We developed a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict onset of cardiogenic shock. To develop and validate CShock, we annotated cardiac ICU datasets with physician adjudicated outcomes. CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.820, which substantially outperformed CardShock (AUROC 0.519), a well-established risk score for cardiogenic shock prognosis. CShock was externally validated in an independent patient cohort and achieved an AUROC of 0.800, demonstrating its generalizability in other cardiac ICUs.