Fred
Abstract:This study addresses the issue of speaker gender bias in Speech Translation (ST) systems, which can lead to offensive and inaccurate translations. The masculine bias often found in large-scale ST systems is typically perpetuated through training data derived from Machine Translation (MT) systems. Our approach involves two key steps. First, we employ Large Language Models (LLMs) to rectify translations based on the speaker's gender in a cost-effective manner. Second, we fine-tune the ST model with the corrected data, enabling the model to generate gender-specific translations directly from audio cues, without the need for explicit gender input. Additionally, we propose a three-mode fine-tuned model for scenarios where the speaker's gender is either predefined or should not be inferred from speech cues. We demonstrate a 70% improvement in translations for female speakers compared to our baseline and other large-scale ST systems, such as Seamless M4T and Canary, on the MuST-SHE test set.
Abstract:This paper introduces Interleaved Speech-Text Language Model (IST-LM) for streaming zero-shot Text-to-Speech (TTS). Unlike many previous approaches, IST-LM is directly trained on interleaved sequences of text and speech tokens with a fixed ratio, eliminating the need for additional efforts in duration prediction and grapheme-to-phoneme alignment. The ratio of text chunk size to speech chunk size is crucial for the performance of IST-LM. To explore this, we conducted a comprehensive series of statistical analyses on the training data and performed correlation analysis with the final performance, uncovering several key factors: 1) the distance between speech tokens and their corresponding text tokens, 2) the number of future text tokens accessible to each speech token, and 3) the frequency of speech tokens precedes their corresponding text tokens. Experimental results demonstrate how to achieve an optimal streaming TTS system without complicated engineering optimization, which has a limited gap with the non-streaming system. IST-LM is conceptually simple and empirically powerful, paving the way for streaming TTS with minimal overhead while largely maintaining performance, showcasing broad prospects coupled with real-time text stream from LLMs.
Abstract:Recent advancements highlight the potential of end-to-end real-time spoken dialogue systems, showcasing their low latency and high quality. In this paper, we introduce SLAM-Omni, a timbre-controllable, end-to-end voice interaction system with single-stage training. SLAM-Omni achieves zero-shot timbre control by modeling spoken language with semantic tokens and decoupling speaker information to a vocoder. By predicting grouped speech semantic tokens at each step, our method significantly reduces the sequence length of audio tokens, accelerating both training and inference. Additionally, we propose historical text prompting to compress dialogue history, facilitating efficient multi-round interactions. Comprehensive evaluations reveal that SLAM-Omni outperforms prior models of similar scale, requiring only 15 hours of training on 4 GPUs with limited data. Notably, it is the first spoken dialogue system to achieve competitive performance with a single-stage training approach, eliminating the need for pre-training on TTS or ASR tasks. Further experiments validate its multilingual and multi-turn dialogue capabilities on larger datasets.
Abstract:Integrating speech into LLM (speech-LLM) has gaining increased attention recently. The mainstream solution is to connect a well-trained speech encoder and LLM with a neural adapter. However, the length mismatch between the speech and text sequences are not well handled, leading to imperfect modality matching between the speech and text. In this work, we propose a novel neural adapter, AlignFormer, to reduce the length gap between the two modalities. AlignFormer consists of CTC and dynamic-window QFormer layers, where the CTC alignment provides the dynamic window information for qformer layers. The LLM backbone is frozen in training to preserve its text capability, especially the instruction following capability. When training with only the ASR data, the proposed AlignFormer unlocks the instruction following capability for speech-LLM and the model can perform zero-shot speech translation (ST) and speech question answering (SQA) tasks. In fact, speech-LLM with AlignFormer can theoretically perform any tasks that the LLM backbone can deal with in the speech version. To evaluate the effectiveness of the instruction-following speech-LLM, we propose to use instruction following rate (IFR) and offer a systematic perspective for the IFR evaluation. In addition, we find that the audio position in training would affect the instruction following capability of speech-LLM and conduct an in-depth study on it. Our findings show that audio-first training achieves higher IFR than instruction-first training. The AlignFormer can achieve a near 100% IFR with audio-first training and game-changing improvements from zero to non-zero IFR on some evaluation data with instruction-first training. We believe that this study is a big step towards the perfect speech and text modality matching in the LLM embedding space.
Abstract:In this paper, we introduce V2SFlow, a novel Video-to-Speech (V2S) framework designed to generate natural and intelligible speech directly from silent talking face videos. While recent V2S systems have shown promising results on constrained datasets with limited speakers and vocabularies, their performance often degrades on real-world, unconstrained datasets due to the inherent variability and complexity of speech signals. To address these challenges, we decompose the speech signal into manageable subspaces (content, pitch, and speaker information), each representing distinct speech attributes, and predict them directly from the visual input. To generate coherent and realistic speech from these predicted attributes, we employ a rectified flow matching decoder built on a Transformer architecture, which models efficient probabilistic pathways from random noise to the target speech distribution. Extensive experiments demonstrate that V2SFlow significantly outperforms state-of-the-art methods, even surpassing the naturalness of ground truth utterances.
Abstract:Neural audio codecs (NACs) have garnered significant attention as key technologies for audio compression as well as audio representation for speech language models. While mainstream NAC models are predominantly convolution-based, the performance of NACs with a purely transformer-based, and convolution-free architecture remains unexplored. This paper introduces TS3-Codec, a Transformer-Based Simple Streaming Single Codec. TS3-Codec consists of only a stack of transformer layers with a few linear layers, offering greater simplicity and expressiveness by fully eliminating convolution layers that require careful hyperparameter tuning and large computations. Under the streaming setup, the proposed TS3-Codec achieves comparable or superior performance compared to the codec with state-of-the-art convolution-based architecture while requiring only 12% of the computation and 77% of bitrate. Furthermore, it significantly outperforms the convolution-based codec when using similar computational resources.
Abstract:Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at \url{http://aka.ms/arlon}.
Abstract:Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings.
Abstract:Models for streaming speech translation (ST) can achieve high accuracy and low latency if they're developed with vast amounts of paired audio in the source language and written text in the target language. Yet, these text labels for the target language are often pseudo labels due to the prohibitive cost of manual ST data labeling. In this paper, we introduce a methodology named Connectionist Temporal Classification guided modality matching (CTC-GMM) that enhances the streaming ST model by leveraging extensive machine translation (MT) text data. This technique employs CTC to compress the speech sequence into a compact embedding sequence that matches the corresponding text sequence, allowing us to utilize matched {source-target} language text pairs from the MT corpora to refine the streaming ST model further. Our evaluations with FLEURS and CoVoST2 show that the CTC-GMM approach can increase translation accuracy relatively by 13.9% and 6.4% respectively, while also boosting decoding speed by 59.7% on GPU.
Abstract:Obtaining word timestamp information from end-to-end (E2E) ASR models remains challenging due to the lack of explicit time alignment during training. This issue is further complicated in multilingual models. Existing methods, either rely on lexicons or introduce additional tokens, leading to scalability issues and increased computational costs. In this work, we propose a new approach to estimate word boundaries without relying on lexicons. Our method leverages word embeddings from sub-word token units and a pretrained ASR model, requiring only word alignment information during training. Our proposed method can scale-up to any number of languages without incurring any additional cost. We validate our approach using a multilingual ASR model trained on five languages and demonstrate its effectiveness against a strong baseline.