Abstract:End-to-end speech translation (ST), which translates source language speech directly into target language text, has garnered significant attention in recent years. Many ST applications require strict length control to ensure that the translation duration matches the length of the source audio, including both speech and pause segments. Previous methods often controlled the number of words or characters generated by the Machine Translation model to approximate the source sentence's length without considering the isochrony of pauses and speech segments, as duration can vary between languages. To address this, we present improvements to the duration alignment component of our sequence-to-sequence ST model. Our method controls translation length by predicting the duration of speech and pauses in conjunction with the translation process. This is achieved by providing timing information to the decoder, ensuring it tracks the remaining duration for speech and pauses while generating the translation. The evaluation on the Zh-En test set of CoVoST 2, demonstrates that the proposed Isochrony-Controlled ST achieves 0.92 speech overlap and 8.9 BLEU, which has only a 1.4 BLEU drop compared to the ST baseline.
Abstract:Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings.
Abstract:Facial Action Units (AUs) are of great significance in the realm of affective computing. In this paper, we propose AU-LLaVA, the first unified AU recognition framework based on the Large Language Model (LLM). AU-LLaVA consists of a visual encoder, a linear projector layer, and a pre-trained LLM. We meticulously craft the text descriptions and fine-tune the model on various AU datasets, allowing it to generate different formats of AU recognition results for the same input image. On the BP4D and DISFA datasets, AU-LLaVA delivers the most accurate recognition results for nearly half of the AUs. Our model achieves improvements of F1-score up to 11.4% in specific AU recognition compared to previous benchmark results. On the FEAFA dataset, our method achieves significant improvements over all 24 AUs compared to previous benchmark results. AU-LLaVA demonstrates exceptional performance and versatility in AU recognition.
Abstract:This paper introduces MVLLaVA, an intelligent agent designed for novel view synthesis tasks. MVLLaVA integrates multiple multi-view diffusion models with a large multimodal model, LLaVA, enabling it to handle a wide range of tasks efficiently. MVLLaVA represents a versatile and unified platform that adapts to diverse input types, including a single image, a descriptive caption, or a specific change in viewing azimuth, guided by language instructions for viewpoint generation. We carefully craft task-specific instruction templates, which are subsequently used to fine-tune LLaVA. As a result, MVLLaVA acquires the capability to generate novel view images based on user instructions, demonstrating its flexibility across diverse tasks. Experiments are conducted to validate the effectiveness of MVLLaVA, demonstrating its robust performance and versatility in tackling diverse novel view synthesis challenges.
Abstract:Facial expression recognition (FER) is a critical task in multimedia with significant implications across various domains. However, analyzing the causes of facial expressions is essential for accurately recognizing them. Current approaches, such as those based on facial action units (AUs), typically provide AU names and intensities but lack insight into the interactions and relationships between AUs and the overall expression. In this paper, we propose a novel method called ExpLLM, which leverages large language models to generate an accurate chain of thought (CoT) for facial expression recognition. Specifically, we have designed the CoT mechanism from three key perspectives: key observations, overall emotional interpretation, and conclusion. The key observations describe the AU's name, intensity, and associated emotions. The overall emotional interpretation provides an analysis based on multiple AUs and their interactions, identifying the dominant emotions and their relationships. Finally, the conclusion presents the final expression label derived from the preceding analysis. Furthermore, we also introduce the Exp-CoT Engine, designed to construct this expression CoT and generate instruction-description data for training our ExpLLM. Extensive experiments on the RAF-DB and AffectNet datasets demonstrate that ExpLLM outperforms current state-of-the-art FER methods. ExpLLM also surpasses the latest GPT-4o in expression CoT generation, particularly in recognizing micro-expressions where GPT-4o frequently fails.
Abstract:Language-agnostic many-to-one end-to-end speech translation models can convert audio signals from different source languages into text in a target language. These models do not need source language identification, which improves user experience. In some cases, the input language can be given or estimated. Our goal is to use this additional language information while preserving the quality of the other languages. We accomplish this by introducing a simple and effective linear input network. The linear input network is initialized as an identity matrix, which ensures that the model can perform as well as, or better than, the original model. Experimental results show that the proposed method can successfully enhance the specified language, while keeping the language-agnostic ability of the many-to-one ST models.
Abstract:The growing need for instant spoken language transcription and translation is driven by increased global communication and cross-lingual interactions. This has made offering translations in multiple languages essential for user applications. Traditional approaches to automatic speech recognition (ASR) and speech translation (ST) have often relied on separate systems, leading to inefficiencies in computational resources, and increased synchronization complexity in real time. In this paper, we propose a streaming Transformer-Transducer (T-T) model able to jointly produce many-to-one and one-to-many transcription and translation using a single decoder. We introduce a novel method for joint token-level serialized output training based on timestamp information to effectively produce ASR and ST outputs in the streaming setting. Experiments on {it,es,de}->en prove the effectiveness of our approach, enabling the generation of one-to-many joint outputs with a single decoder for the first time.
Abstract:Simultaneous Speech-to-Text translation serves a critical role in real-time crosslingual communication. Despite the advancements in recent years, challenges remain in achieving stability in the translation process, a concern primarily manifested in the flickering of partial results. In this paper, we propose a novel revision-controllable method designed to address this issue. Our method introduces an allowed revision window within the beam search pruning process to screen out candidate translations likely to cause extensive revisions, leading to a substantial reduction in flickering and, crucially, providing the capability to completely eliminate flickering. The experiments demonstrate the proposed method can significantly improve the decoding stability without compromising substantially on the translation quality.
Abstract:End-to-end speech translation (ST) for conversation recordings involves several under-explored challenges such as speaker diarization (SD) without accurate word time stamps and handling of overlapping speech in a streaming fashion. In this work, we propose DiariST, the first streaming ST and SD solution. It is built upon a neural transducer-based streaming ST system and integrates token-level serialized output training and t-vector, which were originally developed for multi-talker speech recognition. Due to the absence of evaluation benchmarks in this area, we develop a new evaluation dataset, DiariST-AliMeeting, by translating the reference Chinese transcriptions of the AliMeeting corpus into English. We also propose new metrics, called speaker-agnostic BLEU and speaker-attributed BLEU, to measure the ST quality while taking SD accuracy into account. Our system achieves a strong ST and SD capability compared to offline systems based on Whisper, while performing streaming inference for overlapping speech. To facilitate the research in this new direction, we release the evaluation data, the offline baseline systems, and the evaluation code.
Abstract:In this paper, we explore the zero-shot capability of the Segment Anything Model (SAM) for food image segmentation. To address the lack of class-specific information in SAM-generated masks, we propose a novel framework, called FoodSAM. This innovative approach integrates the coarse semantic mask with SAM-generated masks to enhance semantic segmentation quality. Besides, we recognize that the ingredients in food can be supposed as independent individuals, which motivated us to perform instance segmentation on food images. Furthermore, FoodSAM extends its zero-shot capability to encompass panoptic segmentation by incorporating an object detector, which renders FoodSAM to effectively capture non-food object information. Drawing inspiration from the recent success of promptable segmentation, we also extend FoodSAM to promptable segmentation, supporting various prompt variants. Consequently, FoodSAM emerges as an all-encompassing solution capable of segmenting food items at multiple levels of granularity. Remarkably, this pioneering framework stands as the first-ever work to achieve instance, panoptic, and promptable segmentation on food images. Extensive experiments demonstrate the feasibility and impressing performance of FoodSAM, validating SAM's potential as a prominent and influential tool within the domain of food image segmentation. We release our code at https://github.com/jamesjg/FoodSAM.