Multi-modal recommender systems (MMRS) have gained significant attention due to their ability to leverage information from various modalities to enhance recommendation quality. However, existing negative sampling techniques often struggle to effectively utilize the multi-modal data, leading to suboptimal performance. In this paper, we identify two key challenges in negative sampling for MMRS: (1) producing cohesive negative samples contrasting with positive samples and (2) maintaining a balanced influence across different modalities. To address these challenges, we propose NegGen, a novel framework that utilizes multi-modal large language models (MLLMs) to generate balanced and contrastive negative samples. We design three different prompt templates to enable NegGen to analyze and manipulate item attributes across multiple modalities, and then generate negative samples that introduce better supervision signals and ensure modality balance. Furthermore, NegGen employs a causal learning module to disentangle the effect of intervened key features and irrelevant item attributes, enabling fine-grained learning of user preferences. Extensive experiments on real-world datasets demonstrate the superior performance of NegGen compared to state-of-the-art methods in both negative sampling and multi-modal recommendation.