Abstract:Many positional encodings (PEs) are designed to exhibit long-term decay, based on an entrenched and long-standing inductive opinion: tokens farther away from the current position carry less relevant information. We argue that long-term decay is outdated in the era of LLMs, as LLMs are now applied to tasks demanding precise retrieval of in-context information from arbitrary positions. Firstly, we present empirical analyses on various PEs, demonstrating that models inherently learn attention with only a local-decay pattern while forming a U-shape pattern globally, contradicting the principle of long-term decay. Furthermore, we conduct a detailed analysis of rotary position encoding (RoPE, a prevalent relative positional encoding in LLMs), and found that the U-shape attention is caused by some learned components, which are also the key factor limiting RoPE's expressiveness and extrapolation.Inspired by these insights, we propose High-frequency rotary Position Encoding (HoPE). HoPE replaces the specific components in RoPE with position-independent ones, retaining only high-frequency signals, which also breaks the principle of long-term decay in theory. HoPE achieves two major advantages: (1) Without constraints imposed by long-term decay, contradictory factors that limit spontaneous attention optimization and model extrapolation performance are removed. (2) Components representing positions and semantics are are optimized. These enhances model's context awareness and extrapolation, as validated by extensive experiments.
Abstract:Low-rank adaptation (LoRA) and its variants have recently gained much interest due to their ability to avoid excessive inference costs. However, LoRA still encounters the following challenges: (1) Limitation of low-rank assumption; and (2) Its initialization method may be suboptimal. To this end, we propose PMSS(Pre-trained Matrices Skeleton Selection), which enables high-rank updates with low costs while leveraging semantic and linguistic information inherent in pre-trained weight. It achieves this by selecting skeletons from the pre-trained weight matrix and only learning a small matrix instead. Experiments demonstrate that PMSS outperforms LoRA and other fine-tuning methods across tasks with much less trainable parameters. We demonstrate its effectiveness, especially in handling complex tasks such as DROP benchmark(+3.4%/+5.9% on LLaMA2-7B/13B) and math reasoning(+12.89%/+5.61%/+3.11% on LLaMA2-7B, Mistral-7B and Gemma-7B of GSM8K). The code and model will be released soon.
Abstract:Recent advances in large vision-language models (VLMs) typically employ vision encoders based on the Vision Transformer (ViT) architecture. The division of the images into patches by ViT results in a fragmented perception, thereby hindering the visual understanding capabilities of VLMs. In this paper, we propose an innovative enhancement to address this limitation by introducing a Scene Graph Expression (SGE) module in VLMs. This module extracts and structurally expresses the complex semantic information within images, thereby improving the foundational perception and understanding abilities of VLMs. Extensive experiments demonstrate that integrating our SGE module significantly enhances the VLM's performance in vision-language tasks, indicating its effectiveness in preserving intricate semantic details and facilitating better visual understanding.
Abstract:Structured pruning fundamentally reduces computational and memory overheads of large language models (LLMs) and offers a feasible solution for end-side LLM deployment. Structurally pruned models remain dense and high-precision, highly compatible with further tuning and compression. However, as the coarse-grained structured pruning poses large damage to the highly interconnected model, achieving a high compression ratio for scaled-up LLMs remains a challenge. In this paper, we introduce a task-agnostic structured pruning approach coupled with a compact Transformer architecture design. The proposed approach, named TransAct, reduces transitional activations inside multi-head attention (MHA) and multi-layer perceptron (MLP) modules, while preserving the inter-module activations that are sensitive to perturbations. Hence, the LLM is pruned into an intra-module low-rank architecture, significantly reducing weights, KV Cache and attention computation. TransAct is implemented on the LLaMA model and evaluated on downstream benchmarks. Results verify the optimality of our approach at high compression with respect to both efficiency and performance. Further, ablation studies reveal the strength of activation-guided iterative pruning and provide experimental analysis on the redundancy of MHA and MLP modules.
Abstract:With the remarkable advancements of large language models (LLMs), LLM-based agents have become a research hotspot in human-computer interaction. However, there is a scarcity of benchmarks available for LLM-based mobile agents. Benchmarking these agents generally faces three main challenges: (1) The inefficiency of UI-only operations imposes limitations to task evaluation. (2) Specific instructions within a singular application lack adequacy for assessing the multi-dimensional reasoning and decision-making capacities of LLM mobile agents. (3) Current evaluation metrics are insufficient to accurately assess the process of sequential actions. To this end, we propose Mobile-Bench, a novel benchmark for evaluating the capabilities of LLM-based mobile agents. First, we expand conventional UI operations by incorporating 103 collected APIs to accelerate the efficiency of task completion. Subsequently, we collect evaluation data by combining real user queries with augmentation from LLMs. To better evaluate different levels of planning capabilities for mobile agents, our data is categorized into three distinct groups: SAST, SAMT, and MAMT, reflecting varying levels of task complexity. Mobile-Bench comprises 832 data entries, with more than 200 tasks specifically designed to evaluate multi-APP collaboration scenarios. Furthermore, we introduce a more accurate evaluation metric, named CheckPoint, to assess whether LLM-based mobile agents reach essential points during their planning and reasoning steps.
Abstract:While Large Language Models (LLMs) have achieved remarkable success in various fields, the efficiency of training and inference remains a major challenge. To address this issue, we propose SUBLLM, short for Subsampling-Upsampling-Bypass Large Language Model, an innovative architecture that extends the core decoder-only framework by incorporating subsampling, upsampling, and bypass modules. The subsampling modules are responsible for shortening the sequence, while the upsampling modules restore the sequence length, and the bypass modules enhance convergence. In comparison to LLaMA, the proposed SUBLLM exhibits significant enhancements in both training and inference speeds as well as memory usage, while maintaining competitive few-shot performance. During training, SUBLLM increases speeds by 26% and cuts memory by 10GB per GPU. In inference, it boosts speeds by up to 37% and reduces memory by 1GB per GPU. The training and inference speeds can be enhanced by 34% and 52% respectively when the context window is expanded to 8192. We shall release the source code of the proposed architecture in the published version.
Abstract:Tool learning aims to extend the capabilities of large language models (LLMs) with external tools. A major challenge in tool learning is how to support a large number of tools, including unseen tools. To address this challenge, previous studies have proposed retrieving suitable tools for the LLM based on the user query. However, previously proposed methods do not consider the differences between seen and unseen tools, nor do they take the hierarchy of the tool library into account, which may lead to suboptimal performance for tool retrieval. Therefore, to address the aforementioned issues, we propose ToolRerank, an adaptive and hierarchy-aware reranking method for tool retrieval to further refine the retrieval results. Specifically, our proposed ToolRerank includes Adaptive Truncation, which truncates the retrieval results related to seen and unseen tools at different positions, and Hierarchy-Aware Reranking, which makes retrieval results more concentrated for single-tool queries and more diverse for multi-tool queries. Experimental results show that ToolRerank can improve the quality of the retrieval results, leading to better execution results generated by the LLM.
Abstract:Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs, making deployment difficult in resource-limited settings. Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular due to the rise of LLMs. However, most quantization studies use pre-trained LLMs, and the impact of quantization on instruction-tuned LLMs and the relationship between perplexity and benchmark performance of quantized LLMs are not well understood. Evaluation of quantized LLMs is often limited to language modeling and a few classification tasks, leaving their performance on other benchmarks unclear. To address these gaps, we propose a structured evaluation framework consisting of three critical dimensions: (1) knowledge \& capacity, (2) alignment, and (3) efficiency, and conduct extensive experiments across ten diverse benchmarks. Our experimental results indicate that LLMs with 4-bit quantization can retain performance comparable to their non-quantized counterparts, and perplexity can serve as a proxy metric for quantized LLMs on most benchmarks. Furthermore, quantized LLMs with larger parameter scales can outperform smaller LLMs. Despite the memory savings achieved through quantization, it can also slow down the inference speed of LLMs. Consequently, substantial engineering efforts and hardware support are imperative to achieve a balanced optimization of decoding speed and memory consumption in the context of quantized LLMs.
Abstract:Since the advent of personal computing devices, intelligent personal assistants (IPAs) have been one of the key technologies that researchers and engineers have focused on, aiming to help users efficiently obtain information and execute tasks, and provide users with more intelligent, convenient, and rich interaction experiences. With the development of smartphones and IoT, computing and sensing devices have become ubiquitous, greatly expanding the boundaries of IPAs. However, due to the lack of capabilities such as user intent understanding, task planning, tool using, and personal data management etc., existing IPAs still have limited practicality and scalability. Recently, the emergence of foundation models, represented by large language models (LLMs), brings new opportunities for the development of IPAs. With the powerful semantic understanding and reasoning capabilities, LLM can enable intelligent agents to solve complex problems autonomously. In this paper, we focus on Personal LLM Agents, which are LLM-based agents that are deeply integrated with personal data and personal devices and used for personal assistance. We envision that Personal LLM Agents will become a major software paradigm for end-users in the upcoming era. To realize this vision, we take the first step to discuss several important questions about Personal LLM Agents, including their architecture, capability, efficiency and security. We start by summarizing the key components and design choices in the architecture of Personal LLM Agents, followed by an in-depth analysis of the opinions collected from domain experts. Next, we discuss several key challenges to achieve intelligent, efficient and secure Personal LLM Agents, followed by a comprehensive survey of representative solutions to address these challenges.
Abstract:Simultaneous machine translation (SiMT) is a challenging task that requires starting translation before the full source sentence is available. Prefix-to-prefix framework is often applied to SiMT, which learns to predict target tokens using only a partial source prefix. However, due to the word order difference between languages, misaligned prefix pairs would make SiMT models suffer from serious hallucination problems, i.e. target outputs that are unfaithful to source inputs. Such problems can not only produce target tokens that are not supported by the source prefix, but also hinder generating the correct translation by receiving more source words. In this work, we propose a Confidence-Based Simultaneous Machine Translation (CBSiMT) framework, which uses model confidence to perceive hallucination tokens and mitigates their negative impact with weighted prefix-to-prefix training. Specifically, token-level and sentence-level weights are calculated based on model confidence and acted on the loss function. We explicitly quantify the faithfulness of the generated target tokens using the token-level weight, and employ the sentence-level weight to alleviate the disturbance of sentence pairs with serious word order differences on the model. Experimental results on MuST-C English-to-Chinese and WMT15 German-to-English SiMT tasks demonstrate that our method can consistently improve translation quality at most latency regimes, with up to 2 BLEU scores improvement at low latency.