Abstract:Automated audio captioning (AAC) is an audio-to-text task to describe audio contents in natural language. Recently, the advancements in large language models (LLMs), with improvements in training approaches for audio encoders, have opened up possibilities for improving AAC. Thus, we explore enhancing AAC from three aspects: 1) a pre-trained audio encoder via consistent ensemble distillation (CED) is used to improve the effectivity of acoustic tokens, with a querying transformer (Q-Former) bridging the modality gap to LLM and compress acoustic tokens; 2) we investigate the advantages of using a Llama 2 with 7B parameters as the decoder; 3) another pre-trained LLM corrects text errors caused by insufficient training data and annotation ambiguities. Both the audio encoder and text decoder are optimized by -Base (LoRA). Experiments show that each of these enhancements is effective. Our method obtains a 33.0 SPIDEr-FL score, outperforming the winner of DCASE 2023 Task 6A.
Abstract:Audio-text retrieval is a challenging task, requiring the search for an audio clip or a text caption within a database. The predominant focus of existing research on English descriptions poses a limitation on the applicability of such models, given the abundance of non-English content in real-world data. To address these linguistic disparities, we propose a language enhancement (LE), using a multilingual text encoder (SONAR) to encode the text data with language-specific information. Additionally, we optimize the audio encoder through the application of consistent ensemble distillation (CED), enhancing support for variable-length audio-text retrieval. Our methodology excels in English audio-text retrieval, demonstrating state-of-the-art (SOTA) performance on commonly used datasets such as AudioCaps and Clotho. Simultaneously, the approach exhibits proficiency in retrieving content in seven other languages with only 10% of additional language-enhanced training data, yielding promising results. The source code is publicly available https://github.com/zyyan4/ml-clap.