Abstract:In the future sixth-generation (6G) era, to support accurate localization sensing and efficient communication link establishment for intelligent agents, a comprehensive understanding of the surrounding environment and proper channel modeling are indispensable. The existing method, which solely exploits radio frequency (RF) communication information, is difficult to accomplish accurate channel modeling. Fortunately, multi-modal devices are deployed on intelligent agents to obtain environmental features, which could further assist in channel modeling. Currently, some research efforts have been devoted to utilizing multi-modal information to facilitate channel modeling, while still lack a comprehensive review. To fill this gap, we embark on an initial endeavor with the goal of reviewing multi-modal intelligent channel modeling (MMICM) via Synesthesia of Machines (SoM). Compared to channel modeling approaches that solely utilize RF communication information, the utilization of multi-modal information can provide a more in-depth understanding of the propagation environment around the transceiver, thus facilitating more accurate channel modeling. First, this paper introduces existing channel modeling approaches from the perspective of the channel modeling evolution. Then, we have elaborated and investigated recent advances in the topic of capturing typical channel characteristics and features, i.e., channel non-stationarity and consistency, by characterizing the mathematical, spatial, coupling, and mapping relationships. In addition, applications that can be supported by MMICM are summarized and analyzed. To corroborate the superiority of MMICM via SoM, we give the simulation result and analysis. Finally, some open issues and potential directions for the MMICM are outlined from the perspectives of measurements, modeling, and applications.
Abstract:We show theoretically and empirically that the linear Transformer, when applied to graph data, can implement algorithms that solve canonical problems such as electric flow and eigenvector decomposition. The input to the Transformer is simply the graph incidence matrix; no other explicit positional encoding information is provided. We present explicit weight configurations for implementing each such graph algorithm, and we bound the errors of the constructed Transformers by the errors of the underlying algorithms. Our theoretical findings are corroborated by experiments on synthetic data. Additionally, on a real-world molecular regression task, we observe that the linear Transformer is capable of learning a more effective positional encoding than the default one based on Laplacian eigenvectors. Our work is an initial step towards elucidating the inner-workings of the Transformer for graph data.
Abstract:Integrated sensing and communication (ISAC) technology plays a crucial role in vehicular networks. However, the communication channel within this context exhibits time-varying characteristics, and potential targets may move rapidly, resulting in double dynamics. These presents significant challenges for real-time ISAC precoding design that have not been thoroughly explored. While optimization-based precoding methods have been extensively studied, they are computationally complex and heavily rely on perfect prior information that is rarely available in situations with double dynamics. In this paper, we propose a synesthesia of machine (SoM)-enhanced precoding paradigm, where the base station leverages various modalities such as positioning and channel information to adapt to double dynamics, and effectively utilizes environmental information to stretch ISAC performance boundaries through a deep reinforcement learning framework. Additionally, a parameter-shared actor-critic architecture is tailored to expedite training in complex state and action spaces. Extensive experimental validation has demonstrated the multifaceted superiority of our method over existing approaches.
Abstract:Light detection and ranging (LiDAR) has been utilized for optimizing wireless communications due to its ability to detect the environment. This paper explores the use of LiDAR in channel estimation for wideband multi-user multiple-input-multiple-output orthogonal frequency division multiplexing systems and introduces a LiDAR-enhanced Channel State Information (CSI) learning network (LE-CLN). By utilizing user positioning information, LE-CLN first calculates user-localized over-complete angular measurements. It then investigates the correlation between LiDAR and CSI, transforming raw LiDAR data into a low-complexity format embedded with signal propagation characteristics. LE-CLN also adapts the use of LiDAR based on channel conditions through attention mechanisms. Thanks to the unique wireless features offered by LiDAR, LE-CLN achieves higher estimation accuracy and spectrum efficiency compared to benchmarks, particularly in latency-sensitive applications where pilot transmissions are expected to be reduced.
Abstract:In recent years, there has been significant progress in semantic communication systems empowered by deep learning techniques. It has greatly improved the efficiency of information transmission. Nevertheless, traditional semantic communication models still face challenges, particularly due to their single-task and single-modal orientation. Many of these models are designed for specific tasks, which may result in limitations when applied to multi-task communication systems. Moreover, these models often overlook the correlations among different modal data in multi-modal tasks. It leads to an incomplete understanding of complex information, causing increased communication overhead and diminished performance. To address these problems, we propose a multi-modal fusion-based multi-task semantic communication (MFMSC) framework. In contrast to traditional semantic communication approaches, MFMSC can effectively handle various tasks across multiple modalities. Furthermore, we design a fusion module based on Bidirectional Encoder Representations from Transformers (BERT) for multi-modal semantic information fusion. By leveraging the powerful semantic understanding capabilities and self-attention mechanism of BERT, we achieve effective fusion of semantic information from different modalities. We compare our model with multiple benchmarks. Simulation results show that MFMSC outperforms these models in terms of both performance and communication overhead.
Abstract:In this paper, a novel environment-embedded vehicular channel model is proposed by scatterer recognition from light detection and ranging (LiDAR) point clouds via Synesthesia of Machines (SoM). To provide a robust data foundation, a new intelligent sensing-communication integration dataset in vehicular urban scenarios is constructed. Based on the constructed dataset, the complex SoM mechanism, i.e., mapping relationship between scatterers in electromagnetic space and LiDAR point clouds in physical environment, is explored via multilayer perceptron (MLP) with electromagnetic propagation mechanism. By using LiDAR point clouds to implement scatterer recognition, channel non-stationarity and consistency are modeled in an environment-embedded manner. Using ray-tracing (RT)-based results as the ground truth, the scatterer recognition accuracy exceeds 90%. The accuracy of the proposed model is further verified by the close fit between simulation results and RT results.
Abstract:Channel prediction is an effective approach for reducing the feedback or estimation overhead in massive multi-input multi-output (m-MIMO) systems. However, existing channel prediction methods lack precision due to model mismatch errors or network generalization issues. Large language models (LLMs) have demonstrated powerful modeling and generalization abilities, and have been successfully applied to cross-modal tasks, including the time series analysis. Leveraging the expressive power of LLMs, we propose a pre-trained LLM-empowered channel prediction method (LLM4CP) to predict the future downlink channel state information (CSI) sequence based on the historical uplink CSI sequence. We fine-tune the network while freezing most of the parameters of the pre-trained LLM for better cross-modality knowledge transfer. To bridge the gap between the channel data and the feature space of the LLM, preprocessor, embedding, and output modules are specifically tailored by taking into account unique channel characteristics. Simulations validate that the proposed method achieves SOTA prediction performance on full-sample, few-shot, and generalization tests with low training and inference costs.
Abstract:Integrated sensing and communication (ISAC) technology is essential for enabling the vehicular networks. However, the communication channel in this scenario exhibits time-varying characteristics, and the potential targets may move rapidly, creating a doubly-dynamic phenomenon. This nature poses a challenge for real-time precoder design. While optimization-based solutions are widely researched, they are complex and heavily rely on perfect prior information, which is impractical in double dynamics. To address this challenge, we propose using constrained deep reinforcement learning (CDRL) to facilitate dynamic updates to the ISAC precoder design. Additionally, the primal dual-deep deterministic policy gradient (PD-DDPG) and Wolpertinger architecture are tailored to efficiently train the algorithm under complex constraints and variable numbers of users. The proposed scheme not only adapts to the dynamics based on observations but also leverages environmental information to enhance performance and reduce complexity. Its superiority over existing candidates has been validated through experiments.
Abstract:We develop new algorithms for Riemannian bilevel optimization. We focus in particular on batch and stochastic gradient-based methods, with the explicit goal of avoiding second-order information such as Riemannian hyper-gradients. We propose and analyze $\mathrm{RF^2SA}$, a method that leverages first-order gradient information to navigate the complex geometry of Riemannian manifolds efficiently. Notably, $\mathrm{RF^2SA}$ is a single-loop algorithm, and thus easier to implement and use. Under various setups, including stochastic optimization, we provide explicit convergence rates for reaching $\epsilon$-stationary points. We also address the challenge of optimizing over Riemannian manifolds with constraints by adjusting the multiplier in the Lagrangian, ensuring convergence to the desired solution without requiring access to second-order derivatives.
Abstract:Integrated sensing and communication (ISAC) emerges as a promising technology for B5G/6G, particularly in the millimeter-wave (mmWave) band. However, the widely utilized hybrid architecture in mmWave systems compromises multiplexing gain due to the constraints of limited radio frequency chains. Moreover, additional sensing functionalities exacerbate the impairment of spectrum efficiency (SE). In this paper, we present an optimized beam pattern modulation-embedded ISAC (BPM-ISAC) transceiver design, which spares one RF chain for sensing and the others for communication. To compensate for the reduced SE, index modulation across communication beams is applied. We formulate an optimization problem aimed at minimizing the mean squared error (MSE) of the sensing beampattern, subject to a symbol MSE constraint. This problem is then solved by sequentially optimizing the analog and digital parts. Both the multi-aperture structure (MAS) and the multi-beam structure (MBS) are considered for the design of the analog part. We conduct theoretical analysis on the asymptotic pairwise error probability (APEP) and the Cram\'er-Rao bound (CRB) of direction of arrival (DoA) estimation. Numerical simulations validate the overall enhanced ISAC performance over existing alternatives.