Abstract:Channel prediction permits to acquire channel state information (CSI) without signaling overhead. However, almost all existing channel prediction methods necessitate the deployment of a dedicated model to accommodate a specific configuration. Leveraging the powerful modeling and multi-task learning capabilities of foundation models, we propose the first space-time-frequency (STF) wireless foundation model (WiFo) to address time-frequency channel prediction tasks in a one-for-all manner. Specifically, WiFo is initially pre-trained over massive and extensive diverse CSI datasets. Then, the model will be instantly used for channel prediction under various CSI configurations without any fine-tuning. We propose a masked autoencoder (MAE)-based network structure for WiFo to handle heterogeneous STF CSI data, and design several mask reconstruction tasks for self-supervised pre-training to capture the inherent 3D variations of CSI. To fully unleash its predictive power, we build a large-scale heterogeneous simulated CSI dataset consisting of 160K CSI samples for pre-training. Simulations validate its superior unified learning performance across multiple datasets and demonstrate its state-of-the-art (SOTA) zero-shot generalization performance via comparisons with other full-shot baselines.
Abstract:In dynamic autonomous driving environment, Artificial Intelligence-Generated Content (AIGC) technology can supplement vehicle perception and decision making by leveraging models' generative and predictive capabilities, and has the potential to enhance motion planning, trajectory prediction and traffic simulation. This article proposes a cloud-edge-terminal collaborative architecture to support AIGC for autonomous driving. By delving into the unique properties of AIGC services, this article initiates the attempts to construct mutually supportive AIGC and network systems for autonomous driving, including communication, storage and computation resource allocation schemes to support AIGC services, and leveraging AIGC to assist system design and resource management.
Abstract:Channel prediction is an effective approach for reducing the feedback or estimation overhead in massive multi-input multi-output (m-MIMO) systems. However, existing channel prediction methods lack precision due to model mismatch errors or network generalization issues. Large language models (LLMs) have demonstrated powerful modeling and generalization abilities, and have been successfully applied to cross-modal tasks, including the time series analysis. Leveraging the expressive power of LLMs, we propose a pre-trained LLM-empowered channel prediction method (LLM4CP) to predict the future downlink channel state information (CSI) sequence based on the historical uplink CSI sequence. We fine-tune the network while freezing most of the parameters of the pre-trained LLM for better cross-modality knowledge transfer. To bridge the gap between the channel data and the feature space of the LLM, preprocessor, embedding, and output modules are specifically tailored by taking into account unique channel characteristics. Simulations validate that the proposed method achieves SOTA prediction performance on full-sample, few-shot, and generalization tests with low training and inference costs.
Abstract:Integrated sensing and communication (ISAC) emerges as a promising technology for B5G/6G, particularly in the millimeter-wave (mmWave) band. However, the widely utilized hybrid architecture in mmWave systems compromises multiplexing gain due to the constraints of limited radio frequency chains. Moreover, additional sensing functionalities exacerbate the impairment of spectrum efficiency (SE). In this paper, we present an optimized beam pattern modulation-embedded ISAC (BPM-ISAC) transceiver design, which spares one RF chain for sensing and the others for communication. To compensate for the reduced SE, index modulation across communication beams is applied. We formulate an optimization problem aimed at minimizing the mean squared error (MSE) of the sensing beampattern, subject to a symbol MSE constraint. This problem is then solved by sequentially optimizing the analog and digital parts. Both the multi-aperture structure (MAS) and the multi-beam structure (MBS) are considered for the design of the analog part. We conduct theoretical analysis on the asymptotic pairwise error probability (APEP) and the Cram\'er-Rao bound (CRB) of direction of arrival (DoA) estimation. Numerical simulations validate the overall enhanced ISAC performance over existing alternatives.
Abstract:Integrated Sensing and Communication (ISAC) emerges as a promising technology for B5G/6G, particularly in the millimeter-wave (mmWave) band. However, the widespread adoption of hybrid architecture in mmWave systems compromises multiplexing gain due to limited radio-frequency chains, resulting in mediocre performance when embedding sensing functionality. To avoid sacrificing the spectrum efficiency in hybrid structures while addressing performance bottlenecks in its extension to ISAC, we present an optimized beam pattern modulation-embedded ISAC (BPM-ISAC). BPM-ISAC applies index modulation over beamspace by selectively activating communication beams, aiming to minimize sensing beampattern mean squared error (MSE) under communication MSE constraints through dedicated hybrid transceiver design. Optimization involves the analog part through a min-MSE-based beam selection algorithm, followed by the digital part using an alternating optimization algorithm. Convergence and asymptotic pairwise error probability (APEP) analyses accompany numerical simulations, validating its overall enhanced ISAC performance over existing alternatives.
Abstract:The sixth generation (6G) of mobile communication system is witnessing a new paradigm shift, i.e., integrated sensing-communication system. A comprehensive dataset is a prerequisite for 6G integrated sensing-communication research. This paper develops a novel simulation dataset, named M3SC, for mixed multi-modal (MMM) sensing-communication integration, and the generation framework of the M3SC dataset is further given. To obtain multi-modal sensory data in physical space and communication data in electromagnetic space, we utilize AirSim and WaveFarer to collect multi-modal sensory data and exploit Wireless InSite to collect communication data. Furthermore, the in-depth integration and precise alignment of AirSim, WaveFarer, and Wireless InSite are achieved. The M3SC dataset covers various weather conditions, various frequency bands, and different times of the day. Currently, the M3SC dataset contains 1500 snapshots, including 80 RGB images, 160 depth maps, 80 LiDAR point clouds, 256 sets of mmWave waveforms with 8 radar point clouds, and 72 channel impulse response (CIR) matrices per snapshot, thus totaling 120,000 RGB images, 240,000 depth maps, 120,000 LiDAR point clouds, 384,000 sets of mmWave waveforms with 12,000 radar point clouds, and 108,000 CIR matrices. The data processing result presents the multi-modal sensory information and communication channel statistical properties. Finally, the MMM sensing-communication application, which can be supported by the M3SC dataset, is discussed.