Abstract:In this paper, a novel multi-modal intelligent channel model for sixth-generation (6G) multiple-unmanned aerial vehicle (multi-UAV)-to-multi-vehicle communications is proposed. To thoroughly explore the mapping relationship between the physical environment and the electromagnetic space in the complex multi-UAV-to-multi-vehicle scenario, two new parameters, i.e., terrestrial traffic density (TTD) and aerial traffic density (ATD), are developed and a new sensing-communication intelligent integrated dataset is constructed in suburban scenario under different TTD and ATD conditions. With the aid of sensing data, i.e., light detection and ranging (LiDAR) point clouds, the parameters of static scatterers, terrestrial dynamic scatterers, and aerial dynamic scatterers in the electromagnetic space, e.g., number, distance, angle, and power, are quantified under different TTD and ATD conditions in the physical environment. In the proposed model, the channel non-stationarity and consistency on the time and space domains and the channel non-stationarity on the frequency domain are simultaneously mimicked. The channel statistical properties, such as time-space-frequency correlation function (TSF-CF), time stationary interval (TSI), and Doppler power spectral density (DPSD), are derived and simulated. Simulation results match ray-tracing (RT) results well, which verifies the accuracy of the proposed multi-UAV-to-multi-vehicle channel model.
Abstract:Given the importance of datasets for sensing-communication integration research, a novel simulation platform for constructing communication and multi-modal sensory dataset is developed. The developed platform integrates three high-precision software, i.e., AirSim, WaveFarer, and Wireless InSite, and further achieves in-depth integration and precise alignment of them. Based on the developed platform, a new synthetic intelligent multi-modal sensing-communication dataset for Synesthesia of Machines (SoM), named SynthSoM, is proposed. The SynthSoM dataset contains various air-ground multi-link cooperative scenarios with comprehensive conditions, including multiple weather conditions, times of the day, intelligent agent densities, frequency bands, and antenna types. The SynthSoM dataset encompasses multiple data modalities, including radio-frequency (RF) channel large-scale and small-scale fading data, RF millimeter wave (mmWave) radar sensory data, and non-RF sensory data, e.g., RGB images, depth maps, and light detection and ranging (LiDAR) point clouds. The quality of SynthSoM dataset is validated via statistics-based qualitative inspection and evaluation metrics through machine learning (ML) via real-world measurements. The SynthSoM dataset is open-sourced and provides consistent data for cross-comparing SoM-related algorithms.
Abstract:This paper proposes a novel sixth-generation (6G) multi-modal intelligent vehicle-to-vehicle (V2V) channel model from light detection and ranging (LiDAR) point clouds based on Synesthesia of Machines (SoM). To explore the mapping relationship between physical environment and electromagnetic space, a new V2V high-fidelity mixed sensing-communication integration simulation dataset with different vehicular traffic densities (VTDs) is constructed. Based on the constructed dataset, a novel scatterer recognition (ScaR) algorithm utilizing neural network SegNet is developed to recognize scatterer spatial attributes from LiDAR point clouds via SoM. In the developed ScaR algorithm, the mapping relationship between LiDAR point clouds and scatterers is explored, where the distribution of scatterers is obtained in the form of grid maps. Furthermore, scatterers are distinguished into dynamic and static scatterers based on LiDAR point cloud features, where parameters, e.g., distance, angle, and number, related to scatterers are determined. Through ScaR, dynamic and static scatterers change with the variation of LiDAR point clouds over time, which precisely models channel non-stationarity and consistency under different VTDs. Some important channel statistical properties, such as time-frequency correlation function (TF-CF) and Doppler power spectral density (DPSD), are obtained. Simulation results match well with ray-tracing (RT)-based results, thus demonstrating the necessity of exploring the mapping relationship and the utility of the proposed model.
Abstract:In the future sixth-generation (6G) era, to support accurate localization sensing and efficient communication link establishment for intelligent agents, a comprehensive understanding of the surrounding environment and proper channel modeling are indispensable. The existing method, which solely exploits radio frequency (RF) communication information, is difficult to accomplish accurate channel modeling. Fortunately, multi-modal devices are deployed on intelligent agents to obtain environmental features, which could further assist in channel modeling. Currently, some research efforts have been devoted to utilizing multi-modal information to facilitate channel modeling, while still lack a comprehensive review. To fill this gap, we embark on an initial endeavor with the goal of reviewing multi-modal intelligent channel modeling (MMICM) via Synesthesia of Machines (SoM). Compared to channel modeling approaches that solely utilize RF communication information, the utilization of multi-modal information can provide a more in-depth understanding of the propagation environment around the transceiver, thus facilitating more accurate channel modeling. First, this paper introduces existing channel modeling approaches from the perspective of the channel modeling evolution. Then, we have elaborated and investigated recent advances in the topic of capturing typical channel characteristics and features, i.e., channel non-stationarity and consistency, by characterizing the mathematical, spatial, coupling, and mapping relationships. In addition, applications that can be supported by MMICM are summarized and analyzed. To corroborate the superiority of MMICM via SoM, we give the simulation result and analysis. Finally, some open issues and potential directions for the MMICM are outlined from the perspectives of measurements, modeling, and applications.
Abstract:Graph learning methods have been extensively applied in diverse application areas. However, what kind of inherent graph properties e.g. graph proximity, graph structural information has been encoded into graph representation learning for downstream tasks is still under-explored. In this paper, we propose a novel graph probing framework (GraphProbe) to investigate and interpret whether the family of graph learning methods has encoded different levels of knowledge in graph representation learning. Based on the intrinsic properties of graphs, we design three probes to systematically investigate the graph representation learning process from different perspectives, respectively the node-wise level, the path-wise level, and the structural level. We construct a thorough evaluation benchmark with nine representative graph learning methods from random walk based approaches, basic graph neural networks and self-supervised graph methods, and probe them on six benchmark datasets for node classification, link prediction and graph classification. The experimental evaluation verify that GraphProbe can estimate the capability of graph representation learning. Remaking results have been concluded: GCN and WeightedGCN methods are relatively versatile methods achieving better results with respect to different tasks.
Abstract:Infrared and visible image fusion has been developed from vision perception oriented fusion methods to strategies which both consider the vision perception and high-level vision task. However, the existing task-driven methods fail to address the domain gap between semantic and geometric representation. To overcome these issues, we propose a high-level vision task-driven infrared and visible image fusion network via semantic and geometric domain transformation, terms as HSFusion. Specifically, to minimize the gap between semantic and geometric representation, we design two separate domain transformation branches by CycleGAN framework, and each includes two processes: the forward segmentation process and the reverse reconstruction process. CycleGAN is capable of learning domain transformation patterns, and the reconstruction process of CycleGAN is conducted under the constraint of these patterns. Thus, our method can significantly facilitate the integration of semantic and geometric information and further reduces the domain gap. In fusion stage, we integrate the infrared and visible features that extracted from the reconstruction process of two seperate CycleGANs to obtain the fused result. These features, containing varying proportions of semantic and geometric information, can significantly enhance the high level vision tasks. Additionally, we generate masks based on segmentation results to guide the fusion task. These masks can provide semantic priors, and we design adaptive weights for two distinct areas in the masks to facilitate image fusion. Finally, we conducted comparative experiments between our method and eleven other state-of-the-art methods, demonstrating that our approach surpasses others in both visual appeal and semantic segmentation task.
Abstract:In this paper, a novel environment-embedded vehicular channel model is proposed by scatterer recognition from light detection and ranging (LiDAR) point clouds via Synesthesia of Machines (SoM). To provide a robust data foundation, a new intelligent sensing-communication integration dataset in vehicular urban scenarios is constructed. Based on the constructed dataset, the complex SoM mechanism, i.e., mapping relationship between scatterers in electromagnetic space and LiDAR point clouds in physical environment, is explored via multilayer perceptron (MLP) with electromagnetic propagation mechanism. By using LiDAR point clouds to implement scatterer recognition, channel non-stationarity and consistency are modeled in an environment-embedded manner. Using ray-tracing (RT)-based results as the ground truth, the scatterer recognition accuracy exceeds 90%. The accuracy of the proposed model is further verified by the close fit between simulation results and RT results.
Abstract:Graph Auto-Encoders (GAEs) are powerful tools for graph representation learning. In this paper, we develop a novel Hierarchical Cluster-based GAE (HC-GAE), that can learn effective structural characteristics for graph data analysis. To this end, during the encoding process, we commence by utilizing the hard node assignment to decompose a sample graph into a family of separated subgraphs. We compress each subgraph into a coarsened node, transforming the original graph into a coarsened graph. On the other hand, during the decoding process, we adopt the soft node assignment to reconstruct the original graph structure by expanding the coarsened nodes. By hierarchically performing the above compressing procedure during the decoding process as well as the expanding procedure during the decoding process, the proposed HC-GAE can effectively extract bidirectionally hierarchical structural features of the original sample graph. Furthermore, we re-design the loss function that can integrate the information from either the encoder or the decoder. Since the associated graph convolution operation of the proposed HC-GAE is restricted in each individual separated subgraph and cannot propagate the node information between different subgraphs, the proposed HC-GAE can significantly reduce the over-smoothing problem arising in the classical convolution-based GAEs. The proposed HC-GAE can generate effective representations for either node classification or graph classification, and the experiments demonstrate the effectiveness on real-world datasets.
Abstract:Graph Neural Networks (GNNs) are powerful tools for graph classification. One important operation for GNNs is the downsampling or pooling that can learn effective embeddings from the node representations. In this paper, we propose a new hierarchical pooling operation, namely the Edge-Node Attention-based Differentiable Pooling (ENADPool), for GNNs to learn effective graph representations. Unlike the classical hierarchical pooling operation that is based on the unclear node assignment and simply computes the averaged feature over the nodes of each cluster, the proposed ENADPool not only employs a hard clustering strategy to assign each node into an unique cluster, but also compress the node features as well as their edge connectivity strengths into the resulting hierarchical structure based on the attention mechanism after each pooling step. As a result, the proposed ENADPool simultaneously identifies the importance of different nodes within each separated cluster and edges between corresponding clusters, that significantly addresses the shortcomings of the uniform edge-node based structure information aggregation arising in the classical hierarchical pooling operation. Moreover, to mitigate the over-smoothing problem arising in existing GNNs, we propose a Multi-distance GNN (MD-GNN) model associated with the proposed ENADPool operation, allowing the nodes to actively and directly receive the feature information from neighbors at different random walk steps. Experiments demonstrate the effectiveness of the MD-GNN associated with the proposed ENADPool.
Abstract:In this paper, we propose a new model to learn Adaptive Kernel-based Representations (AKBR) for graph classification. Unlike state-of-the-art R-convolution graph kernels that are defined by merely counting any pair of isomorphic substructures between graphs and cannot provide an end-to-end learning mechanism for the classifier, the proposed AKBR approach aims to define an end-to-end representation learning model to construct an adaptive kernel matrix for graphs. To this end, we commence by leveraging a novel feature-channel attention mechanism to capture the interdependencies between different substructure invariants of original graphs. The proposed AKBR model can thus effectively identify the structural importance of different substructures, and compute the R-convolution kernel between pairwise graphs associated with the more significant substructures specified by their structural attentions. Since each row of the resulting kernel matrix can be theoretically seen as the embedding vector of a sample graph, the proposed AKBR model is able to directly employ the resulting kernel matrix as the graph feature matrix and input it into the classifier for classification (i.e., the SoftMax layer), naturally providing an end-to-end learning architecture between the kernel computation as well as the classifier. Experimental results show that the proposed AKBR model outperforms existing state-of-the-art graph kernels and deep learning methods on standard graph benchmarks.