Abstract:Given the importance of datasets for sensing-communication integration research, a novel simulation platform for constructing communication and multi-modal sensory dataset is developed. The developed platform integrates three high-precision software, i.e., AirSim, WaveFarer, and Wireless InSite, and further achieves in-depth integration and precise alignment of them. Based on the developed platform, a new synthetic intelligent multi-modal sensing-communication dataset for Synesthesia of Machines (SoM), named SynthSoM, is proposed. The SynthSoM dataset contains various air-ground multi-link cooperative scenarios with comprehensive conditions, including multiple weather conditions, times of the day, intelligent agent densities, frequency bands, and antenna types. The SynthSoM dataset encompasses multiple data modalities, including radio-frequency (RF) channel large-scale and small-scale fading data, RF millimeter wave (mmWave) radar sensory data, and non-RF sensory data, e.g., RGB images, depth maps, and light detection and ranging (LiDAR) point clouds. The quality of SynthSoM dataset is validated via statistics-based qualitative inspection and evaluation metrics through machine learning (ML) via real-world measurements. The SynthSoM dataset is open-sourced and provides consistent data for cross-comparing SoM-related algorithms.
Abstract:The sixth generation (6G) of mobile communication system is witnessing a new paradigm shift, i.e., integrated sensing-communication system. A comprehensive dataset is a prerequisite for 6G integrated sensing-communication research. This paper develops a novel simulation dataset, named M3SC, for mixed multi-modal (MMM) sensing-communication integration, and the generation framework of the M3SC dataset is further given. To obtain multi-modal sensory data in physical space and communication data in electromagnetic space, we utilize AirSim and WaveFarer to collect multi-modal sensory data and exploit Wireless InSite to collect communication data. Furthermore, the in-depth integration and precise alignment of AirSim, WaveFarer, and Wireless InSite are achieved. The M3SC dataset covers various weather conditions, various frequency bands, and different times of the day. Currently, the M3SC dataset contains 1500 snapshots, including 80 RGB images, 160 depth maps, 80 LiDAR point clouds, 256 sets of mmWave waveforms with 8 radar point clouds, and 72 channel impulse response (CIR) matrices per snapshot, thus totaling 120,000 RGB images, 240,000 depth maps, 120,000 LiDAR point clouds, 384,000 sets of mmWave waveforms with 12,000 radar point clouds, and 108,000 CIR matrices. The data processing result presents the multi-modal sensory information and communication channel statistical properties. Finally, the MMM sensing-communication application, which can be supported by the M3SC dataset, is discussed.
Abstract:In the era of sixth-generation (6G) wireless communications, integrated sensing and communications (ISAC) is recognized as a promising solution to upgrading the physical system by endowing wireless communications with sensing capability. Existing ISAC is mainly oriented to static scenarios with radio-frequency sensors being the primary participants, thus lacking a comprehensive environment feature characterization and facing a severe performance bottleneck in dynamic environments. In light of this, we generalize the concept of ISAC by mimicking human synesthesia to support intelligent multi-modal sensing-communication integration. The so-termed Synesthesia of Machines (SoM) is not only oriented to generic scenarios, but also particularly suitable for solving challenges arising from dynamic scenarios. We commence by justifying the necessity and potentials of SoM. Subsequently, we offer the definition of SoM and zoom into the specific operating modes, followed by discussions of the state-of-the-art, corresponding objectives, and challenges. To facilitate SoM research, we overview the prerequisite of SoM research, that is, mixed multi-modal (MMM) datasets, and introduce our work. Built upon the MMM datasets, we introduce the mapping relationships between multi-modal sensing and communications, and discuss how channel modeling can be customized to support the exploration of such relationships. Afterwards, we delve into the current research state and implementing challenges of SoM-enhance-based and SoM-concert-based applications. We first overview the SoM-enhance-based communication system designs and present simulation results related to dual-function waveform and predictive beamforming design. Afterwards, we review the recent advances of SoM-concert for single-agent and multi-agent environment sensing. Finally, we propose some open issues and potential directions.