In the era of sixth-generation (6G) wireless communications, integrated sensing and communications (ISAC) is recognized as a promising solution to upgrading the physical system by endowing wireless communications with sensing capability. Existing ISAC is mainly oriented to static scenarios with radio-frequency sensors being the primary participants, thus lacking a comprehensive environment feature characterization and facing a severe performance bottleneck in dynamic environments. In light of this, we generalize the concept of ISAC by mimicking human synesthesia to support intelligent multi-modal sensing-communication integration. The so-termed Synesthesia of Machines (SoM) is not only oriented to generic scenarios, but also particularly suitable for solving challenges arising from dynamic scenarios. We commence by justifying the necessity and potentials of SoM. Subsequently, we offer the definition of SoM and zoom into the specific operating modes, followed by discussions of the state-of-the-art, corresponding objectives, and challenges. To facilitate SoM research, we overview the prerequisite of SoM research, that is, mixed multi-modal (MMM) datasets, and introduce our work. Built upon the MMM datasets, we introduce the mapping relationships between multi-modal sensing and communications, and discuss how channel modeling can be customized to support the exploration of such relationships. Afterwards, we delve into the current research state and implementing challenges of SoM-enhance-based and SoM-concert-based applications. We first overview the SoM-enhance-based communication system designs and present simulation results related to dual-function waveform and predictive beamforming design. Afterwards, we review the recent advances of SoM-concert for single-agent and multi-agent environment sensing. Finally, we propose some open issues and potential directions.