Abstract:In recent years, substantial research efforts have been devoted to enhancing sequential recommender systems by integrating abundant side information with ID-based collaborative information. This study specifically focuses on leveraging the textual metadata (e.g., titles and brands) associated with items. While existing methods have achieved notable success by combining text and ID representations, they often struggle to strike a balance between textual information embedded in text representations and collaborative information from sequential patterns of user behavior. In light of this, we propose CoCoRec, a novel Code-based textual and Collaborative semantic fusion method for sequential Recommendation. The key idea behind our approach is to bridge the gap between textual and collaborative information using semantic codes. Specifically, we generate fine-grained semantic codes from multi-view text embeddings through vector quantization techniques. Subsequently, we develop a code-guided semantic-fusion module based on the cross-attention mechanism to flexibly extract and integrate relevant information from text representations. In order to further enhance the fusion of textual and collaborative semantics, we introduce an optimization strategy that employs code masking with two specific objectives: masked code modeling and masked sequence alignment. The merit of these objectives lies in leveraging mask prediction tasks and augmented item representations to capture code correlations within individual items and enhance the sequence modeling of the recommendation backbone. Extensive experiments conducted on four public datasets demonstrate the superiority of CoCoRec, showing significant improvements over various sequential recommendation models. Our code is available at https://anonymous.4open.science/r/CoCoRec-6E41.
Abstract:Diffusion-based models have shown great promise in molecular generation but often require a large number of sampling steps to generate valid samples. In this paper, we introduce a novel Straight-Line Diffusion Model (SLDM) to tackle this problem, by formulating the diffusion process to follow a linear trajectory. The proposed process aligns well with the noise sensitivity characteristic of molecular structures and uniformly distributes reconstruction effort across the generative process, thus enhancing learning efficiency and efficacy. Consequently, SLDM achieves state-of-the-art performance on 3D molecule generation benchmarks, delivering a 100-fold improvement in sampling efficiency. Furthermore, experiments on toy data and image generation tasks validate the generality and robustness of SLDM, showcasing its potential across diverse generative modeling domains.
Abstract:Evolutionary Reinforcement Learning (EvoRL) has emerged as a promising approach to overcoming the limitations of traditional reinforcement learning (RL) by integrating the Evolutionary Computation (EC) paradigm with RL. However, the population-based nature of EC significantly increases computational costs, thereby restricting the exploration of algorithmic design choices and scalability in large-scale settings. To address this challenge, we introduce $\texttt{$\textbf{EvoRL}$}$, the first end-to-end EvoRL framework optimized for GPU acceleration. The framework executes the entire training pipeline on accelerators, including environment simulations and EC processes, leveraging hierarchical parallelism through vectorization and compilation techniques to achieve superior speed and scalability. This design enables the efficient training of large populations on a single machine. In addition to its performance-oriented design, $\texttt{$\textbf{EvoRL}$}$ offers a comprehensive platform for EvoRL research, encompassing implementations of traditional RL algorithms (e.g., A2C, PPO, DDPG, TD3, SAC), Evolutionary Algorithms (e.g., CMA-ES, OpenES, ARS), and hybrid EvoRL paradigms such as Evolutionary-guided RL (e.g., ERL, CEM-RL) and Population-Based AutoRL (e.g., PBT). The framework's modular architecture and user-friendly interface allow researchers to seamlessly integrate new components, customize algorithms, and conduct fair benchmarking and ablation studies. The project is open-source and available at: https://github.com/EMI-Group/evorl.
Abstract:Recently, generative recommendation has emerged as a promising new paradigm that directly generates item identifiers for recommendation. However, a key challenge lies in how to effectively construct item identifiers that are suitable for recommender systems. Existing methods typically decouple item tokenization from subsequent generative recommendation training, likely resulting in suboptimal performance. To address this limitation, we propose ETEGRec, a novel End-To-End Generative Recommender by seamlessly integrating item tokenization and generative recommendation. Our framework is developed based on the dual encoder-decoder architecture, which consists of an item tokenizer and a generative recommender. In order to achieve mutual enhancement between the two components, we propose a recommendation-oriented alignment approach by devising two specific optimization objectives: sequence-item alignment and preference-semantic alignment. These two alignment objectives can effectively couple the learning of item tokenizer and generative recommender, thereby fostering the mutual enhancement between the two components. Finally, we further devise an alternating optimization method, to facilitate stable and effective end-to-end learning of the entire framework. Extensive experiments demonstrate the effectiveness of our proposed framework compared to a series of traditional sequential recommendation models and generative recommendation baselines.
Abstract:Prostate cancer is the second most common cancer in males worldwide, and mpMRI is commonly used for diagnosis. However, interpreting mpMRI is challenging and requires expertise from radiologists. This highlights the urgent need for automated grading in mpMRI. Existing studies lack integration of clinical prior information and suffer from uneven training sample distribution due to prevalence. Therefore, we propose a solution that incorporates prior knowledge, addresses the issue of uneven medical sample distribution, and maintains high interpretability in mpMRI. Firstly, we introduce Prior Knowledge-Based Feature Extraction, which mathematically models the PI-RADS criteria for prostate cancer as diagnostic information into model training. Secondly, we propose Adaptive Recall Feedback Loss to address the extremely imbalanced data problem. This method adjusts the training dynamically based on accuracy and recall in the validation set, resulting in high accuracy and recall simultaneously in the testing set.Thirdly, we design an Enhanced Cascade Prostate Cancer Classifier that classifies prostate cancer into different levels in an interpretable way, which refines the classification results and helps with clinical intervention. Our method is validated through experiments on the PI-CAI dataset and outperforms other methods with a more balanced result in both accuracy and recall rate.
Abstract:Infrared and visible image fusion has been developed from vision perception oriented fusion methods to strategies which both consider the vision perception and high-level vision task. However, the existing task-driven methods fail to address the domain gap between semantic and geometric representation. To overcome these issues, we propose a high-level vision task-driven infrared and visible image fusion network via semantic and geometric domain transformation, terms as HSFusion. Specifically, to minimize the gap between semantic and geometric representation, we design two separate domain transformation branches by CycleGAN framework, and each includes two processes: the forward segmentation process and the reverse reconstruction process. CycleGAN is capable of learning domain transformation patterns, and the reconstruction process of CycleGAN is conducted under the constraint of these patterns. Thus, our method can significantly facilitate the integration of semantic and geometric information and further reduces the domain gap. In fusion stage, we integrate the infrared and visible features that extracted from the reconstruction process of two seperate CycleGANs to obtain the fused result. These features, containing varying proportions of semantic and geometric information, can significantly enhance the high level vision tasks. Additionally, we generate masks based on segmentation results to guide the fusion task. These masks can provide semantic priors, and we design adaptive weights for two distinct areas in the masks to facilitate image fusion. Finally, we conducted comparative experiments between our method and eleven other state-of-the-art methods, demonstrating that our approach surpasses others in both visual appeal and semantic segmentation task.
Abstract:To facilitate the research on large language models (LLMs), this paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of LLMs. This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency. With our library, users can easily reproduce existing methods, train new models, and conduct comprehensive performance comparisons. To rigorously test LLMBox, we conduct extensive experiments in a diverse coverage of evaluation settings, and experimental results demonstrate the effectiveness and efficiency of our library in supporting various implementations related to LLMs. The detailed introduction and usage guidance can be found at https://github.com/RUCAIBox/LLMBox.
Abstract:Large Language Models (LLMs) have demonstrated remarkable abilities, one of the most important being In-Context Learning (ICL). With ICL, LLMs can derive the underlying rule from a few demonstrations and provide answers that comply with the rule. Previous work hypothesized that the network creates a "task vector" in specific positions during ICL. Patching the "task vector" allows LLMs to achieve zero-shot performance similar to few-shot learning. However, we discover that such "task vectors" do not exist in tasks where the rule has to be defined through multiple demonstrations. Instead, the rule information provided by each demonstration is first transmitted to its answer position and forms its own rule vector. Importantly, all the rule vectors contribute to the output in a distributed manner. We further show that the rule vectors encode a high-level abstraction of rules extracted from the demonstrations. These results are further validated in a series of tasks that rely on rules dependent on multiple demonstrations. Our study provides novel insights into the mechanism underlying ICL in LLMs, demonstrating how ICL may be achieved through an information aggregation mechanism.
Abstract:Diffusion Models (DMs) have achieved great success in image generation and other fields. By fine sampling through the trajectory defined by the SDE/ODE solver based on a well-trained score model, DMs can generate remarkable high-quality results. However, this precise sampling often requires multiple steps and is computationally demanding. To address this problem, instance-based distillation methods have been proposed to distill a one-step generator from a DM by having a simpler student model mimic a more complex teacher model. Yet, our research reveals an inherent limitations in these methods: the teacher model, with more steps and more parameters, occupies different local minima compared to the student model, leading to suboptimal performance when the student model attempts to replicate the teacher. To avoid this problem, we introduce a novel distributional distillation method, which uses an exclusive distributional loss. This method exceeds state-of-the-art (SOTA) results while requiring significantly fewer training images. Additionally, we show that DMs' layers are activated differently at different time steps, leading to an inherent capability to generate images in a single step. Freezing most of the convolutional layers in a DM during distributional distillation leads to further performance improvements. Our method achieves the SOTA results on CIFAR-10 (FID 1.54), AFHQv2 64x64 (FID 1.23), FFHQ 64x64 (FID 0.85) and ImageNet 64x64 (FID 1.16) with great efficiency. Most of those results are obtained with only 5 million training images within 6 hours on 8 A100 GPUs. This breakthrough not only enhances the understanding of efficient image generation models but also offers a scalable framework for advancing the state of the art in various applications.
Abstract:Conventional synthetic aperture radar (SAR) imaging systems typically employ deterministic signal designs, which lack the capability to convey communication information and are thus not suitable for integrated sensing and communication (ISAC) scenarios. In this letter, we propose a joint communication and SAR imaging (JCASAR) system based on orthogonal frequency-division multiplexing (OFDM) signal with cyclic prefix (CP), which is capable of reconstructing the target profile while serving a communication user. In contrast to traditional matched filters, we propose a least squares (LS) estimator for range profiling. Then the SAR image is obtained followed by range cell migration correction (RCMC) and azimuth processing. By minimizing the mean squared error (MSE) of the proposed LS estimator, we investigate the optimal waveform design for SAR imaging, and JCASAR under random signaling, where power allocation strategies are conceived for Gaussian-distributed ISAC signals, in an effort to strike a flexible performance tradeoff between the communication and SAR imaging tasks. Numerical results are provided to validate the effectiveness of the proposed ISAC waveform design for JCASAR systems.