Abstract:Large Language Models (LLMs) have demonstrated remarkable abilities, one of the most important being In-Context Learning (ICL). With ICL, LLMs can derive the underlying rule from a few demonstrations and provide answers that comply with the rule. Previous work hypothesized that the network creates a "task vector" in specific positions during ICL. Patching the "task vector" allows LLMs to achieve zero-shot performance similar to few-shot learning. However, we discover that such "task vectors" do not exist in tasks where the rule has to be defined through multiple demonstrations. Instead, the rule information provided by each demonstration is first transmitted to its answer position and forms its own rule vector. Importantly, all the rule vectors contribute to the output in a distributed manner. We further show that the rule vectors encode a high-level abstraction of rules extracted from the demonstrations. These results are further validated in a series of tasks that rely on rules dependent on multiple demonstrations. Our study provides novel insights into the mechanism underlying ICL in LLMs, demonstrating how ICL may be achieved through an information aggregation mechanism.
Abstract:Diffusion Models (DMs) have achieved great success in image generation and other fields. By fine sampling through the trajectory defined by the SDE/ODE solver based on a well-trained score model, DMs can generate remarkable high-quality results. However, this precise sampling often requires multiple steps and is computationally demanding. To address this problem, instance-based distillation methods have been proposed to distill a one-step generator from a DM by having a simpler student model mimic a more complex teacher model. Yet, our research reveals an inherent limitations in these methods: the teacher model, with more steps and more parameters, occupies different local minima compared to the student model, leading to suboptimal performance when the student model attempts to replicate the teacher. To avoid this problem, we introduce a novel distributional distillation method, which uses an exclusive distributional loss. This method exceeds state-of-the-art (SOTA) results while requiring significantly fewer training images. Additionally, we show that DMs' layers are activated differently at different time steps, leading to an inherent capability to generate images in a single step. Freezing most of the convolutional layers in a DM during distributional distillation leads to further performance improvements. Our method achieves the SOTA results on CIFAR-10 (FID 1.54), AFHQv2 64x64 (FID 1.23), FFHQ 64x64 (FID 0.85) and ImageNet 64x64 (FID 1.16) with great efficiency. Most of those results are obtained with only 5 million training images within 6 hours on 8 A100 GPUs. This breakthrough not only enhances the understanding of efficient image generation models but also offers a scalable framework for advancing the state of the art in various applications.