Abstract:Graph learning methods have been extensively applied in diverse application areas. However, what kind of inherent graph properties e.g. graph proximity, graph structural information has been encoded into graph representation learning for downstream tasks is still under-explored. In this paper, we propose a novel graph probing framework (GraphProbe) to investigate and interpret whether the family of graph learning methods has encoded different levels of knowledge in graph representation learning. Based on the intrinsic properties of graphs, we design three probes to systematically investigate the graph representation learning process from different perspectives, respectively the node-wise level, the path-wise level, and the structural level. We construct a thorough evaluation benchmark with nine representative graph learning methods from random walk based approaches, basic graph neural networks and self-supervised graph methods, and probe them on six benchmark datasets for node classification, link prediction and graph classification. The experimental evaluation verify that GraphProbe can estimate the capability of graph representation learning. Remaking results have been concluded: GCN and WeightedGCN methods are relatively versatile methods achieving better results with respect to different tasks.
Abstract:Knowledge distillation transfers knowledge from large models into small models, and has recently made remarkable achievements. However, few studies has investigated the mechanism of knowledge distillation against distribution shift. Distribution shift refers to the data distribution drifts between training and testing phases. In this paper, we reconsider the paradigm of knowledge distillation by reformulating the objective function in shift situations. Under the real scenarios, we propose a unified and systematic framework to benchmark knowledge distillation against two general distributional shifts including diversity and correlation shift. The evaluation benchmark covers more than 30 methods from algorithmic, data-driven, and optimization perspectives for five benchmark datasets. Overall, we conduct extensive experiments on the student model. We reveal intriguing observations of poor teaching performance under distribution shifts; in particular, complex algorithms and data augmentation offer limited gains in many cases.
Abstract:Long-term time series forecasting is a vital task and has a wide range of real applications. Recent methods focus on capturing the underlying patterns from one single domain (e.g. the time domain or the frequency domain), and have not taken a holistic view to process long-term time series from the time-frequency domains. In this paper, we propose a Time-Frequency Enhanced Decomposed Network (TFDNet) to capture both the long-term underlying patterns and temporal periodicity from the time-frequency domain. In TFDNet, we devise a multi-scale time-frequency enhanced encoder backbone and develop two separate trend and seasonal time-frequency blocks to capture the distinct patterns within the decomposed trend and seasonal components in multi-resolutions. Diverse kernel learning strategies of the kernel operations in time-frequency blocks have been explored, by investigating and incorporating the potential different channel-wise correlation patterns of multivariate time series. Experimental evaluation of eight datasets from five benchmark domains demonstrated that TFDNet is superior to state-of-the-art approaches in both effectiveness and efficiency.
Abstract:The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop's outcomes, including the rethinking of IR's core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.