Abstract:Overloaded vehicles bring great harm to transportation infrastructures. BWIM (bridge weigh-in-motion) method for overloaded vehicle identification is getting more popular because it can be implemented without interruption to the traffic. However, its application is still limited because its effectiveness largely depends on professional knowledge and extra information, and is susceptible to occurrence of multiple vehicles. In this paper, a deep learning based overloaded vehicle identification approach (DOVI) is proposed, with the purpose of overloaded vehicle identification for long-span bridges by the use of structural health monitoring data. The proposed DOVI model uses temporal convolutional architectures to extract the spatial and temporal features of the input sequence data, thus provides an end-to-end overloaded vehicle identification solution which neither needs the influence line nor needs to obtain velocity and wheelbase information in advance and can be applied under the occurrence of multiple vehicles. Model evaluations are conducted on a simply supported beam and a long-span cable-stayed bridge under random traffic flow. Results demonstrate that the proposed deep-learning overloaded vehicle identification approach has better effectiveness and robustness, compared with other machine learning and deep learning approaches.
Abstract:The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop's outcomes, including the rethinking of IR's core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.
Abstract:Deep learning methods have advanced quickly in brain imaging analysis over the past few years, but they are usually restricted by the limited labeled data. Pre-trained model on unlabeled data has presented promising improvement in feature learning in many domains, including natural language processing and computer vision. However, this technique is under-explored in brain network analysis. In this paper, we focused on pre-training methods with Transformer networks to leverage existing unlabeled data for brain functional network classification. First, we proposed a Transformer-based neural network, named as BrainNPT, for brain functional network classification. The proposed method leveraged <cls> token as a classification embedding vector for the Transformer model to effectively capture the representation of brain network. Second, We proposed a pre-training architecture with two pre-training strategies for BrainNPT model to leverage unlabeled brain network data to learn the structure information of brain networks. The results of classification experiments demonstrated the BrainNPT model without pre-training achieved the best performance with the state-of-the-art models, and the BrainNPT model with pre-training strongly outperformed the state-of-the-art models. The pre-training BrainNPT model improved 8.75% of accuracy compared with the model without pre-training. We further compared the pre-training strategies, analyzed the influence of the parameters of the model, and interpreted the fine-tuned model.
Abstract:Graph or network has been widely used for describing and modeling complex systems in biomedicine. Deep learning methods, especially graph neural networks (GNNs), have been developed to learn and predict with such structured data. In this paper, we proposed a novel transformer and snowball encoding networks (TSEN) for biomedical graph classification, which introduced transformer architecture with graph snowball connection into GNNs for learning whole-graph representation. TSEN combined graph snowball connection with graph transformer by snowball encoding layers, which enhanced the power to capture multi-scale information and global patterns to learn the whole-graph features. On the other hand, TSEN also used snowball graph convolution as position embedding in transformer structure, which was a simple yet effective method for capturing local patterns naturally. Results of experiments using four graph classification datasets demonstrated that TSEN outperformed the state-of-the-art typical GNN models and the graph-transformer based GNN models.
Abstract:Morphological attributes from histopathological images and molecular profiles from genomic data are important information to drive diagnosis, prognosis, and therapy of cancers. By integrating these heterogeneous but complementary data, many multi-modal methods are proposed to study the complex mechanisms of cancers, and most of them achieve comparable or better results from previous single-modal methods. However, these multi-modal methods are restricted to a single task (e.g., survival analysis or grade classification), and thus neglect the correlation between different tasks. In this study, we present a multi-modal fusion framework based on multi-task correlation learning (MultiCoFusion) for survival analysis and cancer grade classification, which combines the power of multiple modalities and multiple tasks. Specifically, a pre-trained ResNet-152 and a sparse graph convolutional network (SGCN) are used to learn the representations of histopathological images and mRNA expression data respectively. Then these representations are fused by a fully connected neural network (FCNN), which is also a multi-task shared network. Finally, the results of survival analysis and cancer grade classification output simultaneously. The framework is trained by an alternate scheme. We systematically evaluate our framework using glioma datasets from The Cancer Genome Atlas (TCGA). Results demonstrate that MultiCoFusion learns better representations than traditional feature extraction methods. With the help of multi-task alternating learning, even simple multi-modal concatenation can achieve better performance than other deep learning and traditional methods. Multi-task learning can improve the performance of multiple tasks not just one of them, and it is effective in both single-modal and multi-modal data.
Abstract:The challenge of solving data mining problems in e-commerce applications such as recommendation system (RS) and click-through rate (CTR) prediction is how to make inferences by constructing combinatorial features from a large number of categorical features while preserving the interpretability of the method. In this paper, we propose Automatic Embedded Feature Engineering(AEFE), an automatic feature engineering framework for representing categorical features, which consists of various components including custom paradigm feature construction and multiple feature selection. By selecting the potential field pairs intelligently and generating a series of interpretable combinatorial features, our framework can provide a set of unseen generated features for enhancing model performance and then assist data analysts in discovering the feature importance for particular data mining tasks. Furthermore, AEFE is distributed implemented by task-parallelism, data sampling, and searching schema based on Matrix Factorization field combination, to optimize the performance and enhance the efficiency and scalability of the framework. Experiments conducted on some typical e-commerce datasets indicate that our method outperforms the classical machine learning models and state-of-the-art deep learning models.
Abstract:We propose Top-N-Rank, a novel family of list-wise Learning-to-Rank models for reliably recommending the N top-ranked items. The proposed models optimize a variant of the widely used discounted cumulative gain (DCG) objective function which differs from DCG in two important aspects: (i) It limits the evaluation of DCG only on the top N items in the ranked lists, thereby eliminating the impact of low-ranked items on the learned ranking function; and (ii) it incorporates weights that allow the model to leverage multiple types of implicit feedback with differing levels of reliability or trustworthiness. Because the resulting objective function is non-smooth and hence challenging to optimize, we consider two smooth approximations of the objective function, using the traditional sigmoid function and the rectified linear unit (ReLU). We propose a family of learning-to-rank algorithms (Top-N-Rank) that work with any smooth objective function. Then, a more efficient variant, Top-N-Rank.ReLU, is introduced, which effectively exploits the properties of ReLU function to reduce the computational complexity of Top-N-Rank from quadratic to linear in the average number of items rated by users. The results of our experiments using two widely used benchmarks, namely, the MovieLens data set and the Amazon Video Games data set demonstrate that: (i) The `top-N truncation' of the objective function substantially improves the ranking quality of the top N recommendations; (ii) using the ReLU for smoothing the objective function yields significant improvement in both ranking quality as well as runtime as compared to using the sigmoid; and (iii) Top-N-Rank.ReLU substantially outperforms the well-performing list-wise ranking methods in terms of ranking quality.