Abstract:Top-$k$ sparsification has recently been widely used to reduce the communication volume in distributed deep learning; however, due to Gradient Accumulation (GA) dilemma, the performance of top-$k$ sparsification is still limited. Several methods have been proposed to handle the GA dilemma but have two drawbacks: (1) they are frustrated by the high communication complexity as they introduce a large amount of extra transmission; (2) they are not flexible for non-power-of-two numbers of workers. To solve these two problems, we propose a flexible and efficient sparse communication framework, dubbed SparDL. SparDL uses the Spar-Reduce-Scatter algorithm to solve the GA dilemma without additional communication operations and is flexible to any number of workers. Besides, to further reduce the communication complexity and adjust the proportion of latency and bandwidth cost in communication complexity, we propose the Spar-All-Gather algorithm as part of SparDL. Extensive experiments validate the superiority of SparDL.
Abstract:With the explosive increase of big data, training a Machine Learning (ML) model becomes a computation-intensive workload, which would take days or even weeks. Thus, model reuse has received attention in the ML community, where it is called transfer learning. Transfer learning avoids training a new model from scratch by transferring knowledge from a source task to a target task. Existing transfer learning methods mostly focus on how to improve the performance of the target task through a specific source model, and assume that the source model is given. Although many source models are available, it is difficult for data scientists to select the best source model for the target task manually. Hence, how to efficiently select a suitable source model for model reuse is still an unsolved problem. In this paper, we propose SMS, an effective, efficient and flexible source model selection framework. SMS is effective even when source and target datasets have significantly different data labels, is flexible to support source models with any type of structure, and is efficient to avoid any training process. For each source model, SMS first vectorizes the samples in the target dataset into soft labels by directly applying this model to the target dataset, then uses Gaussian distributions to fit for clusters of soft labels, and finally measures its distinguishing ability using Gaussian mixture-based metric. Moreover, we present an improved SMS (I-SMS), which decreases the output number of source model. I-SMS can significantly reduce the selection time while retaining the selection performance of SMS. Extensive experiments on a range of practical model reuse workloads demonstrate the effectiveness and efficiency of SMS.