Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Center of Excellence for Research in Computational Intelligence and Applications
Abstract:Federated learning (FL), integrating group fairness mechanisms, allows multiple clients to collaboratively train a global model that makes unbiased decisions for different populations grouped by sensitive attributes (e.g., gender and race). Due to its distributed nature, previous studies have demonstrated that FL systems are vulnerable to model poisoning attacks. However, these studies primarily focus on perturbing accuracy, leaving a critical question unexplored: Can an attacker bypass the group fairness mechanisms in FL and manipulate the global model to be biased? The motivations for such an attack vary; an attacker might seek higher accuracy, yet fairness considerations typically limit the accuracy of the global model or aim to cause ethical disruption. To address this question, we design a novel form of attack in FL, termed Profit-driven Fairness Attack (PFATTACK), which aims not to degrade global model accuracy but to bypass fairness mechanisms. Our fundamental insight is that group fairness seeks to weaken the dependence of outputs on input attributes related to sensitive information. In the proposed PFATTACK, an attacker can recover this dependence through local fine-tuning across various sensitive groups, thereby creating a biased yet accuracy-preserving malicious model and injecting it into FL through model replacement. Compared to attacks targeting accuracy, PFATTACK is more stealthy. The malicious model in PFATTACK exhibits subtle parameter variations relative to the original global model, making it robust against detection and filtering by Byzantine-resilient aggregations. Extensive experiments on benchmark datasets are conducted for four fair FL frameworks and three Byzantine-resilient aggregations against model poisoning, demonstrating the effectiveness and stealth of PFATTACK in bypassing group fairness mechanisms in FL.
Abstract:Multiobjective evolutionary learning (MOEL) has demonstrated its advantages of training fairer machine learning models considering a predefined set of conflicting objectives, including accuracy and different fairness measures. Recent works propose to construct a representative subset of fairness measures as optimisation objectives of MOEL throughout model training. However, the determination of a representative measure set relies on dataset, prior knowledge and requires substantial computational costs. What's more, those representative measures may differ across different model training processes. Instead of using a static predefined set determined before model training, this paper proposes to dynamically and adaptively determine a representative measure set online during model training. The dynamically determined representative set is then used as optimising objectives of the MOEL framework and can vary with time. Extensive experimental results on 12 well-known benchmark datasets demonstrate that our proposed framework achieves outstanding performance compared to state-of-the-art approaches for mitigating unfairness in terms of accuracy as well as 25 fairness measures although only a few of them were dynamically selected and used as optimisation objectives. The results indicate the importance of setting optimisation objectives dynamically during training.
Abstract:Recent advancements in the realm of deep generative models focus on generating samples that satisfy multiple desired properties. However, prevalent approaches optimize these property functions independently, thus omitting the trade-offs among them. In addition, the property optimization is often improperly integrated into the generative models, resulting in an unnecessary compromise on generation quality (i.e., the quality of generated samples). To address these issues, we formulate a constrained optimization problem. It seeks to optimize generation quality while ensuring that generated samples reside at the Pareto front of multiple property objectives. Such a formulation enables the generation of samples that cannot be further improved simultaneously on the conflicting property functions and preserves good quality of generated samples. Building upon this formulation, we introduce the PaRetO-gUided Diffusion model (PROUD), wherein the gradients in the denoising process are dynamically adjusted to enhance generation quality while the generated samples adhere to Pareto optimality. Experimental evaluations on image generation and protein generation tasks demonstrate that our PROUD consistently maintains superior generation quality while approaching Pareto optimality across multiple property functions compared to various baselines.
Abstract:Nowadays, neural network (NN) and deep learning (DL) techniques are widely adopted in many applications, including recommender systems. Given the sparse and stochastic nature of collaborative filtering (CF) data, recent works have critically analyzed the effective improvement of neural-based approaches compared to simpler and often transparent algorithms for recommendation. Previous results showed that NN and DL models can be outperformed by traditional algorithms in many tasks. Moreover, given the largely black-box nature of neural-based methods, interpretable results are not naturally obtained. Following on this debate, we first present a transparent probabilistic model that topologically organizes user and product latent classes based on the review information. In contrast to popular neural techniques for representation learning, we readily obtain a statistical, visualization-friendly tool that can be easily inspected to understand user and product characteristics from a textual-based perspective. Then, given the limitations of common embedding techniques, we investigate the possibility of using the estimated interpretable quantities as model input for a rating prediction task. To contribute to the recent debates, we evaluate our results in terms of both capacity for interpretability and predictive performances in comparison with popular text-based neural approaches. The results demonstrate that the proposed latent class representations can yield competitive predictive performances, compared to popular, but difficult-to-interpret approaches.
Abstract:Real-world applications involve various discrete optimization problems. Designing a specialized optimizer for each of these problems is challenging, typically requiring significant domain knowledge and human efforts. Hence, developing general-purpose optimizers as an off-the-shelf tool for a wide range of problems has been a long-standing research target. This article introduces MEGO, a novel general-purpose neural optimizer trained through a fully data-driven learning-to-optimize (L2O) approach. MEGO consists of a mixture-of-experts trained on experiences from solving training problems and can be viewed as a foundation model for optimization problems with binary decision variables. When presented with a problem to solve, MEGO actively selects relevant expert models to generate high-quality solutions. MEGO can be used as a standalone sample-efficient optimizer or in conjunction with existing search methods as an initial solution generator. The generality of MEGO is validated across six problem classes, including three classic problem classes and three problem classes arising from real-world applications in compilers, network analysis, and 3D reconstruction. Trained solely on classic problem classes, MEGO performs very well on all six problem classes, significantly surpassing widely used general-purpose optimizers in both solution quality and efficiency. In some cases, MEGO even surpasses specialized state-of-the-art optimizers. Additionally, MEGO provides a similarity measure between problems, yielding a new perspective for problem classification. In the pursuit of general-purpose optimizers through L2O, MEGO represents an initial yet significant step forward.
Abstract:Fairness in machine learning (ML) has received much attention. However, existing studies have mainly focused on the distributive fairness of ML models. The other dimension of fairness, i.e., procedural fairness, has been neglected. In this paper, we first define the procedural fairness of ML models, and then give formal definitions of individual and group procedural fairness. We propose a novel metric to evaluate the group procedural fairness of ML models, called $GPF_{FAE}$, which utilizes a widely used explainable artificial intelligence technique, namely feature attribution explanation (FAE), to capture the decision process of the ML models. We validate the effectiveness of $GPF_{FAE}$ on a synthetic dataset and eight real-world datasets. Our experiments reveal the relationship between procedural and distributive fairness of the ML model. Based on our analysis, we propose a method for identifying the features that lead to the procedural unfairness of the model and propose two methods to improve procedural fairness after identifying unfair features. Our experimental results demonstrate that we can accurately identify the features that lead to procedural unfairness in the ML model, and both of our proposed methods can significantly improve procedural fairness with a slight impact on model performance, while also improving distributive fairness.
Abstract:Mixtral, a representative sparse mixture of experts (SMoE) language model, has received significant attention due to its unique model design and superior performance. Based on Mixtral-8x7B-v0.1, in this paper, we propose Chinese-Mixtral and Chinese-Mixtral-Instruct with improved Chinese language abilities by adopting further pre-training and instruction fine-tuning. Experimental results show that our Chinese-Mixtral and Chinese-Mixtral-Instruct successfully improve Chinese understanding and generation performance while retaining the original English abilities. Then, we discuss several key questions when performing language adaptation on large language models, including the necessity of extending the language-specific vocabulary and the choice of the initialization model (foundation model v.s. instruction model), by providing empirical results and analysis. We also present the visualizations of each expert to examine their importance on downstream tasks. Our resources are publicly available through \url{https://github.com/ymcui/Chinese-Mixtral}.
Abstract:Clustering in dynamic environments is of increasing importance, with broad applications ranging from real-time data analysis and online unsupervised learning to dynamic facility location problems. While meta-heuristics have shown promising effectiveness in static clustering tasks, their application for tracking optimal clustering solutions or robust clustering over time in dynamic environments remains largely underexplored. This is partly due to a lack of dynamic datasets with diverse, controllable, and realistic dynamic characteristics, hindering systematic performance evaluations of clustering algorithms in various dynamic scenarios. This deficiency leads to a gap in our understanding and capability to effectively design algorithms for clustering in dynamic environments. To bridge this gap, this paper introduces the Dynamic Dataset Generator (DDG). DDG features multiple dynamic Gaussian components integrated with a range of heterogeneous, local, and global changes. These changes vary in spatial and temporal severity, patterns, and domain of influence, providing a comprehensive tool for simulating a wide range of dynamic scenarios.
Abstract:The fitness level method is an easy-to-use tool for estimating the hitting time of elitist EAs. Recently, general linear lower and upper bounds from fitness levels have been constructed. However, the construction of these bounds requires recursive computation, which makes them difficult to use in practice. We address this shortcoming with a new directed graph (digraph) method that does not require recursive computation and significantly simplifies the calculation of coefficients in linear bounds. In this method, an EA is modeled as a Markov chain on a digraph. Lower and upper bounds are directly calculated using conditional transition probabilities on the digraph. This digraph method provides straightforward and explicit expressions of lower and upper time bound for elitist EAs. In particular, it can be used to derive tight lower bound on both fitness landscapes without and with shortcuts. This is demonstrated through four examples: the (1+1) EA on OneMax, FullyDeceptive, TwoMax1 and Deceptive. Our work extends the fitness level method from addressing simple fitness functions without shortcuts to more realistic functions with shortcuts.
Abstract:Real-world datasets inevitably contain biases that arise from different sources or conditions during data collection. Consequently, such inconsistency itself acts as a confounding factor that disturbs the cluster analysis. Existing methods eliminate the biases by projecting data onto the orthogonal complement of the subspace expanded by the confounding factor before clustering. Therein, the interested clustering factor and the confounding factor are coarsely considered in the raw feature space, where the correlation between the data and the confounding factor is ideally assumed to be linear for convenient solutions. These approaches are thus limited in scope as the data in real applications is usually complex and non-linearly correlated with the confounding factor. This paper presents a new clustering framework named Sanitized Clustering Against confounding Bias (SCAB), which removes the confounding factor in the semantic latent space of complex data through a non-linear dependence measure. To be specific, we eliminate the bias information in the latent space by minimizing the mutual information between the confounding factor and the latent representation delivered by Variational Auto-Encoder (VAE). Meanwhile, a clustering module is introduced to cluster over the purified latent representations. Extensive experiments on complex datasets demonstrate that our SCAB achieves a significant gain in clustering performance by removing the confounding bias. The code is available at \url{https://github.com/EvaFlower/SCAB}.