Abstract:Simultaneous localization and mapping (SLAM) is a key technology that provides user equipment (UE) tracking and environment mapping services, enabling the deep integration of sensing and communication. The millimeter-wave (mmWave) communication, with its larger bandwidths and antenna arrays, inherently facilitates more accurate delay and angle measurements than sub-6 GHz communication, thereby providing opportunities for SLAM. However, none of the existing works have realized the SLAM function under the 5G New Radio (NR) standard due to specification and hardware constraints. In this study, we investigate how 5G mmWave communication systems can achieve situational awareness without changing the transceiver architecture and 5G NR standard. We implement 28 GHz mmWave transceivers that deploy OFDM-based 5G NR waveform with 160 MHz channel bandwidth, and we realize beam management following the 5G NR. Furthermore, we develop an efficient successive cancellation-based angle extraction approach to obtain angles of arrival and departure from the reference signal received power measurements. On the basis of angle measurements, we propose an angle-only SLAM algorithm to track UE and map features in the radio environment. Thorough experiments and ray tracing-based computer simulations verify that the proposed angle-based SLAM can achieve sub-meter level localization and mapping accuracy with a single base station and without the requirement of strict time synchronization. Our experiments also reveal many propagation properties critical to the success of SLAM in 5G mmWave communication systems.
Abstract:Nowadays, the rapid development of photovoltaic(PV) power stations requires increasingly reliable maintenance and fault diagnosis of PV modules in the field. Due to the effectiveness, convolutional neural network (CNN) has been widely used in the existing automatic defect detection of PV cells. However, the parameters of these CNN-based models are very large, which require stringent hardware resources and it is difficult to be applied in actual industrial projects. To solve these problems, we propose a novel lightweight high-performance model for automatic defect detection of PV cells in electroluminescence(EL) images based on neural architecture search and knowledge distillation. To auto-design an effective lightweight model, we introduce neural architecture search to the field of PV cell defect classification for the first time. Since the defect can be any size, we design a proper search structure of network to better exploit the multi-scale characteristic. To improve the overall performance of the searched lightweight model, we further transfer the knowledge learned by the existing pre-trained large-scale model based on knowledge distillation. Different kinds of knowledge are exploited and transferred, including attention information, feature information, logit information and task-oriented information. Experiments have demonstrated that the proposed model achieves the state-of-the-art performance on the public PV cell dataset of EL images under online data augmentation with accuracy of 91.74% and the parameters of 1.85M. The proposed lightweight high-performance model can be easily deployed to the end devices of the actual industrial projects and retain the accuracy.
Abstract:Estimating the kernel mean in a reproducing kernel Hilbert space is a critical component in many kernel learning algorithms. Given a finite sample, the standard estimate of the target kernel mean is the empirical average. Previous works have shown that better estimators can be constructed by shrinkage methods. In this work, we propose to corrupt data examples with noise from known distributions and present a new kernel mean estimator, called the marginalized kernel mean estimator, which estimates kernel mean under the corrupted distribution. Theoretically, we show that the marginalized kernel mean estimator introduces implicit regularization in kernel mean estimation. Empirically, we show on a variety of datasets that the marginalized kernel mean estimator obtains much lower estimation error than the existing estimators.