Abstract:Despite significant advancements in Multimodal Large Language Models (MLLMs) for understanding complex human intentions through cross-modal interactions, capturing intricate image details remains challenging. Previous methods integrating multiple vision encoders to enhance visual detail introduce redundancy and computational overhead. We observe that most MLLMs utilize only the last-layer feature map of the vision encoder for visual representation, neglecting the rich fine-grained information in shallow feature maps. To address this issue, we propose \modelname, a simple yet effective multi-layer feature fuser that efficiently integrates deep and shallow features from Vision Transformers (ViTs). Specifically, it leverages semantically aligned deep features as queries to dynamically extract missing details from shallow features, thus preserving semantic alignment while enriching the representation with fine-grained information. Applied to the LLaVA-1.5 model, \modelname~achieves significant improvements in visual representation and benchmark performance, providing a more flexible and lightweight solution compared to multi-encoder ensemble methods. The code and model have been released at https://github.com/yuecao0119/MMFuser.
Abstract:Attention mechanisms, particularly channel attention, have become highly influential in numerous computer vision tasks. Despite their effectiveness, many existing methods primarily focus on optimizing performance through complex attention modules applied at individual convolutional layers, often overlooking the synergistic interactions that can occur across multiple layers. In response to this gap, we introduce bridge attention, a novel approach designed to facilitate more effective integration and information flow between different convolutional layers. Our work extends the original bridge attention model (BAv1) by introducing an adaptive selection operator, which reduces information redundancy and optimizes the overall information exchange. This enhancement results in the development of BAv2, which achieves substantial performance improvements in the ImageNet classification task, obtaining Top-1 accuracies of 80.49% and 81.75% when using ResNet50 and ResNet101 as backbone networks, respectively. These results surpass the retrained baselines by 1.61% and 0.77%, respectively. Furthermore, BAv2 outperforms other existing channel attention techniques, such as the classical SENet101, exceeding its retrained performance by 0.52% Additionally, integrating BAv2 into advanced convolutional networks and vision transformers has led to significant gains in performance across a wide range of computer vision tasks, underscoring its broad applicability.
Abstract:Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of Vision Large Language Models (VLLMs). However, existing visual instruction tuning datasets include the following limitations: (1) Instruction annotation quality: despite existing VLLMs exhibiting strong performance, instructions generated by those advanced VLLMs may still suffer from inaccuracies, such as hallucinations. (2) Instructions and image diversity: the limited range of instruction types and the lack of diversity in image data may impact the model's ability to generate diversified and closer to real-world scenarios outputs. To address these challenges, we construct a high-quality, diverse visual instruction tuning dataset MMInstruct, which consists of 973K instructions from 24 domains. There are four instruction types: Judgement, Multiple-Choice, Long Visual Question Answering and Short Visual Question Answering. To construct MMInstruct, we propose an instruction generation data engine that leverages GPT-4V, GPT-3.5, and manual correction. Our instruction generation engine enables semi-automatic, low-cost, and multi-domain instruction generation at 1/6 the cost of manual construction. Through extensive experiment validation and ablation experiments, we demonstrate that MMInstruct could significantly improve the performance of VLLMs, e.g., the model fine-tuning on MMInstruct achieves new state-of-the-art performance on 10 out of 12 benchmarks. The code and data shall be available at https://github.com/yuecao0119/MMInstruct.
Abstract:Misinformation can seriously impact society, affecting anything from public opinion to institutional confidence and the political horizon of a state. Fake News (FN) proliferation on online websites and Online Social Networks (OSNs) has increased profusely. Various fact-checking websites include news in English and barely provide information about FN in regional languages. Thus the Urdu FN purveyors cannot be discerned using factchecking portals. SOTA approaches for Fake News Detection (FND) count upon appropriately labelled and large datasets. FND in regional and resource-constrained languages lags due to the lack of limited-sized datasets and legitimate lexical resources. The previous datasets for Urdu FND are limited-sized, domain-restricted, publicly unavailable and not manually verified where the news is translated from English into Urdu. In this paper, we curate and contribute the first largest publicly available dataset for Urdu FND, Ax-to-Grind Urdu, to bridge the identified gaps and limitations of existing Urdu datasets in the literature. It constitutes 10,083 fake and real news on fifteen domains collected from leading and authentic Urdu newspapers and news channel websites in Pakistan and India. FN for the Ax-to-Grind dataset is collected from websites and crowdsourcing. The dataset contains news items in Urdu from the year 2017 to the year 2023. Expert journalists annotated the dataset. We benchmark the dataset with an ensemble model of mBERT,XLNet, and XLM RoBERTa. The selected models are originally trained on multilingual large corpora. The results of the proposed model are based on performance metrics, F1-score, accuracy, precision, recall and MCC value.
Abstract:Developing robust and discriminative appearance models has been a long-standing research challenge in visual object tracking. In the prevalent Siamese-based paradigm, the features extracted by the Siamese-like networks are often insufficient to model the tracked targets and distractor objects, thereby hindering them from being robust and discriminative simultaneously. While most Siamese trackers focus on designing robust correlation operations, we propose a novel single-branch tracking framework inspired by the transformer. Unlike the Siamese-like feature extraction, our tracker deeply embeds cross-image feature correlation in multiple layers of the feature network. By extensively matching the features of the two images through multiple layers, it can suppress non-target features, resulting in target-aware feature extraction. The output features can be directly used for predicting target locations without additional correlation steps. Thus, we reformulate the two-branch Siamese tracking as a conceptually simple, fully transformer-based Single-Branch Tracking pipeline, dubbed SBT. After conducting an in-depth analysis of the SBT baseline, we summarize many effective design principles and propose an improved tracker dubbed SuperSBT. SuperSBT adopts a hierarchical architecture with a local modeling layer to enhance shallow-level features. A unified relation modeling is proposed to remove complex handcrafted layer pattern designs. SuperSBT is further improved by masked image modeling pre-training, integrating temporal modeling, and equipping with dedicated prediction heads. Thus, SuperSBT outperforms the SBT baseline by 4.7%,3.0%, and 4.5% AUC scores in LaSOT, TrackingNet, and GOT-10K. Notably, SuperSBT greatly raises the speed of SBT from 37 FPS to 81 FPS. Extensive experiments show that our method achieves superior results on eight VOT benchmarks.
Abstract:Large multimodal models demonstrate remarkable generalist ability to perform diverse multimodal tasks in a zero-shot manner. Large-scale web-based image-text pairs contribute fundamentally to this success, but suffer from excessive noise. Recent studies use alternative captions synthesized by captioning models and have achieved notable benchmark performance. However, our experiments reveal significant Scalability Deficiency and World Knowledge Loss issues in models trained with synthetic captions, which have been largely obscured by their initial benchmark success. Upon closer examination, we identify the root cause as the overly-simplified language structure and lack of knowledge details in existing synthetic captions. To provide higher-quality and more scalable multimodal pretraining data, we propose CapsFusion, an advanced framework that leverages large language models to consolidate and refine information from both web-based image-text pairs and synthetic captions. Extensive experiments show that CapsFusion captions exhibit remarkable all-round superiority over existing captions in terms of model performance (e.g., 18.8 and 18.3 improvements in CIDEr score on COCO and NoCaps), sample efficiency (requiring 11-16 times less computation than baselines), world knowledge depth, and scalability. These effectiveness, efficiency and scalability advantages position CapsFusion as a promising candidate for future scaling of LMM training.
Abstract:We introduce a novel approach to counter adversarial attacks, namely, image resampling. Image resampling transforms a discrete image into a new one, simulating the process of scene recapturing or rerendering as specified by a geometrical transformation. The underlying rationale behind our idea is that image resampling can alleviate the influence of adversarial perturbations while preserving essential semantic information, thereby conferring an inherent advantage in defending against adversarial attacks. To validate this concept, we present a comprehensive study on leveraging image resampling to defend against adversarial attacks. We have developed basic resampling methods that employ interpolation strategies and coordinate shifting magnitudes. Our analysis reveals that these basic methods can partially mitigate adversarial attacks. However, they come with apparent limitations: the accuracy of clean images noticeably decreases, while the improvement in accuracy on adversarial examples is not substantial. We propose implicit representation-driven image resampling (IRAD) to overcome these limitations. First, we construct an implicit continuous representation that enables us to represent any input image within a continuous coordinate space. Second, we introduce SampleNet, which automatically generates pixel-wise shifts for resampling in response to different inputs. Furthermore, we can extend our approach to the state-of-the-art diffusion-based method, accelerating it with fewer time steps while preserving its defense capability. Extensive experiments demonstrate that our method significantly enhances the adversarial robustness of diverse deep models against various attacks while maintaining high accuracy on clean images.
Abstract:As a distributed machine learning paradigm, Federated Learning (FL) enables large-scale clients to collaboratively train a model without sharing their raw data. However, due to the lack of data auditing for untrusted clients, FL is vulnerable to poisoning attacks, especially backdoor attacks. By using poisoned data for local training or directly changing the model parameters, attackers can easily inject backdoors into the model, which can trigger the model to make misclassification of targeted patterns in images. To address these issues, we propose a novel data-free trigger-generation-based defense approach based on the two characteristics of backdoor attacks: i) triggers are learned faster than normal knowledge, and ii) trigger patterns have a greater effect on image classification than normal class patterns. Our approach generates the images with newly learned knowledge by identifying the differences between the old and new global models, and filters trigger images by evaluating the effect of these generated images. By using these trigger images, our approach eliminates poisoned models to ensure the updated global model is benign. Comprehensive experiments demonstrate that our approach can defend against almost all the existing types of backdoor attacks and outperform all the seven state-of-the-art defense methods with both IID and non-IID scenarios. Especially, our approach can successfully defend against the backdoor attack even when 80\% of the clients are malicious.
Abstract:Layered architectures have been widely used in robot systems. The majority of them implement planning and execution functions in separate layers. However, there still lacks a straightforward way to transit high-level tasks in the planning layer to the low-level motor commands in the execution layer. In order to tackle this challenge, we propose a novel approach to ground the manipulator primitive tasks to robot low-level actions using large language models (LLMs). We designed a program-like prompt based on the task frame formalism. In this way, we enable LLMs to generate position/force set-points for hybrid control. Evaluations over several state-of-the-art LLMs are provided.
Abstract:Motivated by the efficiency and rapid convergence of pre-trained models for solving downstream tasks, this paper extensively studies the impact of Continual Learning (CL) models as pre-trainers. In both supervised and unsupervised CL, we find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance. This is because CL models can learn improved task-general features when easily forgetting task-specific knowledge. Based on this observation, we suggest a new unsupervised CL framework with masked modeling, which aims to capture fluent task-generic representation during training. Furthermore, we propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks. The model fine-tuned with GLAD achieves competitive performance and can also be used as a good pre-trained model itself. We believe this paper breaks the barriers between pre-training and fine-tuning steps and leads to a sustainable learning framework in which the continual learner incrementally improves model generalization, yielding better transfer to unseen tasks.