Abstract:Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.
Abstract:Current 3D Large Multimodal Models (3D LMMs) have shown tremendous potential in 3D-vision-based dialogue and reasoning. However, how to further enhance 3D LMMs to achieve fine-grained scene understanding and facilitate flexible human-agent interaction remains a challenging problem. In this work, we introduce 3D-LLaVA, a simple yet highly powerful 3D LMM designed to act as an intelligent assistant in comprehending, reasoning, and interacting with the 3D world. Unlike existing top-performing methods that rely on complicated pipelines-such as offline multi-view feature extraction or additional task-specific heads-3D-LLaVA adopts a minimalist design with integrated architecture and only takes point clouds as input. At the core of 3D-LLaVA is a new Omni Superpoint Transformer (OST), which integrates three functionalities: (1) a visual feature selector that converts and selects visual tokens, (2) a visual prompt encoder that embeds interactive visual prompts into the visual token space, and (3) a referring mask decoder that produces 3D masks based on text description. This versatile OST is empowered by the hybrid pretraining to obtain perception priors and leveraged as the visual connector that bridges the 3D data to the LLM. After performing unified instruction tuning, our 3D-LLaVA reports impressive results on various benchmarks. The code and model will be released to promote future exploration.
Abstract:Estimating the 6D pose and 3D size of an object from an image is a fundamental task in computer vision. Most current approaches are restricted to specific instances with known models or require ground truth depth information or point cloud captures from LIDAR. We tackle the harder problem of pose estimation for category-level objects from a single RGB image. We propose a novel solution that eliminates the need for specific object models or depth information. Our method utilises score-based diffusion models to generate object pose hypotheses to model the distribution of possible poses for the object. Unlike previous methods that rely on costly trained likelihood estimators to remove outliers before pose aggregation using mean pooling, we introduce a simpler approach using Mean Shift to estimate the mode of the distribution as the final pose estimate. Our approach outperforms the current state-of-the-art on the REAL275 dataset by a significant margin.
Abstract:We address the task of Vision-Language Navigation in Continuous Environments (VLN-CE) under the zero-shot setting. Zero-shot VLN-CE is particularly challenging due to the absence of expert demonstrations for training and minimal environment structural prior to guide navigation. To confront these challenges, we propose a Constraint-Aware Navigator (CA-Nav), which reframes zero-shot VLN-CE as a sequential, constraint-aware sub-instruction completion process. CA-Nav continuously translates sub-instructions into navigation plans using two core modules: the Constraint-Aware Sub-instruction Manager (CSM) and the Constraint-Aware Value Mapper (CVM). CSM defines the completion criteria for decomposed sub-instructions as constraints and tracks navigation progress by switching sub-instructions in a constraint-aware manner. CVM, guided by CSM's constraints, generates a value map on the fly and refines it using superpixel clustering to improve navigation stability. CA-Nav achieves the state-of-the-art performance on two VLN-CE benchmarks, surpassing the previous best method by 12 percent and 13 percent in Success Rate on the validation unseen splits of R2R-CE and RxR-CE, respectively. Moreover, CA-Nav demonstrates its effectiveness in real-world robot deployments across various indoor scenes and instructions.
Abstract:Recent advancements in video-based large language models (Video LLMs) have witnessed the emergence of diverse capabilities to reason and interpret dynamic visual content. Among them, gameplay videos stand out as a distinctive data source, often containing glitches that defy physics commonsense. This characteristic renders them an effective benchmark for assessing the under-explored capability of physical commonsense understanding in video LLMs. In this paper, we propose PhysGame as a pioneering benchmark to evaluate physical commonsense violations in gameplay videos. PhysGame comprises 880 videos associated with glitches spanning four fundamental domains (i.e., mechanics, kinematics, optics, and material properties) and across 12 distinct physical commonsense. Through extensively evaluating various state-ofthe-art video LLMs, our findings reveal that the performance of current open-source video LLMs significantly lags behind that of proprietary counterparts. To bridge this gap, we curate an instruction tuning dataset PhysInstruct with 140,057 question-answering pairs to facilitate physical commonsense learning. In addition, we also propose a preference optimization dataset PhysDPO with 34,358 training pairs, where the dis-preferred responses are generated conditioned on misleading titles (i.e., meta information hacking), fewer frames (i.e., temporal hacking) and lower spatial resolutions (i.e., spatial hacking). Based on the suite of datasets, we propose PhysVLM as a physical knowledge-enhanced video LLM. Extensive experiments on both physical-oriented benchmark PhysGame and general video understanding benchmarks demonstrate the state-ofthe-art performance of PhysVLM.
Abstract:Weight-averaged model-merging has emerged as a powerful approach in deep learning, capable of enhancing model performance without fine-tuning or retraining. However, the underlying mechanisms that explain its effectiveness remain largely unexplored. In this paper, we investigate this technique from three novel perspectives to provide deeper insights into how and why weight-averaged model-merging works: (1) we examine the intrinsic patterns captured by the learning of the model weights, through the visualizations of their patterns on several datasets, showing that these weights often encode structured and interpretable patterns; (2) we investigate model ensemble merging strategies based on averaging on weights versus averaging on features, providing detailed analyses across diverse architectures and datasets; and (3) we explore the impact on model-merging prediction stability in terms of changing the parameter magnitude, revealing insights into the way of weight averaging works as regularization by showing the robustness across different parameter scales. Our findings shed light on the "black box" of weight-averaged model-merging, offering valuable insights and practical recommendations that advance the model-merging process.
Abstract:Instruction tuning constitutes a prevalent technique for tailoring Large Vision Language Models (LVLMs) to meet individual task requirements. To date, most of the existing approaches are confined to single-task adaptation, whereas the requirements in real-world scenarios are inherently varied and continually evolving. Thus an ideal LVLM should sustain continual instruction tuning in the face of stream-task distributions (i.e., different domains, emerging capabilities, and new datasets) while minimizing the forgetting of previously acquired knowledge. To achieve this, we propose a new benchmark for COntinuAl inStruction Tuning on LVLMs (COAST), which encompasses the aforementioned domain-incremental, capability-incremental, and dataset-incremental configurations. In terms of methodology, we propose Continual LLaVA, a rehearsal-free method tailored for continual instruction tuning in LVLMs. To circumvent the additional overhead associated with experience replay, we freeze LVLMs and construct the dual increment embeddings for each input instruction to facilitate parameter-efficient tuning. Specifically, the increment embeddings can be decomposed into two principal components: 1) intrinsic increment embeddings to encode task-specific characteristics. To achieve this, we set up a low-rank pool containing candidate embeddings, from which we select the relevant ones based on their similarity with the user instructions; 2) contextual increment embeddings to investigate the inter-dependencies across tasks. In this regard, the low-rank embeddings chosen in the previous tasks are aggregated via learnable weighted sum to provide complementary hints. Extensive experiments indicate that the proposed Continual LLaVA outperforms previous methods by significantly reducing the forgetting during the continual instruction tuning process.
Abstract:In the field of autonomous driving and mobile robotics, there has been a significant shift in the methods used to create Bird's Eye View (BEV) representations. This shift is characterised by using transformers and learning to fuse measurements from disparate vision sensors, mainly lidar and cameras, into a 2D planar ground-based representation. However, these learning-based methods for creating such maps often rely heavily on extensive annotated data, presenting notable challenges, particularly in diverse or non-urban environments where large-scale datasets are scarce. In this work, we present BEVPose, a framework that integrates BEV representations from camera and lidar data, using sensor pose as a guiding supervisory signal. This method notably reduces the dependence on costly annotated data. By leveraging pose information, we align and fuse multi-modal sensory inputs, facilitating the learning of latent BEV embeddings that capture both geometric and semantic aspects of the environment. Our pretraining approach demonstrates promising performance in BEV map segmentation tasks, outperforming fully-supervised state-of-the-art methods, while necessitating only a minimal amount of annotated data. This development not only confronts the challenge of data efficiency in BEV representation learning but also broadens the potential for such techniques in a variety of domains, including off-road and indoor environments.
Abstract:This work presents the experiments and solution outline for our teams winning submission in the Learn To Race Autonomous Racing Virtual Challenge 2022 hosted by AIcrowd. The objective of the Learn-to-Race competition is to push the boundary of autonomous technology, with a focus on achieving the safety benefits of autonomous driving. In the description the competition is framed as a reinforcement learning (RL) challenge. We focused our initial efforts on implementation of Soft Actor Critic (SAC) variants. Our goal was to learn non-trivial control of the race car exclusively from visual and geometric features, directly mapping pixels to control actions. We made suitable modifications to the default reward policy aiming to promote smooth steering and acceleration control. The framework for the competition provided real time simulation, meaning a single episode (learning experience) is measured in minutes. Instead of pursuing parallelisation of episodes we opted to explore a more traditional approach in which the visual perception was processed (via learned operators) and fed into rule-based controllers. Such a system, while not as academically "attractive" as a pixels-to-actions approach, results in a system that requires less training, is more explainable, generalises better and is easily tuned and ultimately out-performed all other agents in the competition by a large margin.
Abstract:Affordances are central to robotic manipulation, where most tasks can be simplified to interactions with task-specific regions on objects. By focusing on these key regions, we can abstract away task-irrelevant information, simplifying the learning process, and enhancing generalisation. In this paper, we propose an affordance-centric policy-learning approach that centres and appropriately \textit{orients} a \textit{task frame} on these affordance regions allowing us to achieve both \textbf{intra-category invariance} -- where policies can generalise across different instances within the same object category -- and \textbf{spatial invariance} -- which enables consistent performance regardless of object placement in the environment. We propose a method to leverage existing generalist large vision models to extract and track these affordance frames, and demonstrate that our approach can learn manipulation tasks using behaviour cloning from as little as 10 demonstrations, with equivalent generalisation to an image-based policy trained on 305 demonstrations. We provide video demonstrations on our project site: https://affordance-policy.github.io.