Abstract:Forestry machines operated in forest production environments face challenges when performing manipulation tasks, especially regarding the complicated dynamics of underactuated crane systems and the heavy weight of logs to be grasped. This study investigates the feasibility of using reinforcement learning for forestry crane manipulators in grasping and lifting heavy wood logs autonomously. We first build a simulator using Mujoco physics engine to create realistic scenarios, including modeling a forestry crane with 8 degrees of freedom from CAD data and wood logs of different sizes. We further implement a velocity controller for autonomous log grasping with deep reinforcement learning using a curriculum strategy. Utilizing our new simulator, the proposed control strategy exhibits a success rate of 96% when grasping logs of different diameters and under random initial configurations of the forestry crane. In addition, reward functions and reinforcement learning baselines are implemented to provide an open-source benchmark for the community in large-scale manipulation tasks. A video with several demonstrations can be seen at https://www.acin.tuwien.ac.at/en/d18a/
Abstract:This paper presents a new trajectory replanner for grasping irregular objects. Unlike conventional grasping tasks where the object's geometry is assumed simple, we aim to achieve a "dynamic grasp" of the irregular objects, which requires continuous adjustment during the grasping process. To effectively handle irregular objects, we propose a trajectory optimization framework that comprises two phases. Firstly, in a specified time limit of 10s, initial offline trajectories are computed for a seamless motion from an initial configuration of the robot to grasp the object and deliver it to a pre-defined target location. Secondly, fast online trajectory optimization is implemented to update robot trajectories in real-time within 100 ms. This helps to mitigate pose estimation errors from the vision system. To account for model inaccuracies, disturbances, and other non-modeled effects, trajectory tracking controllers for both the robot and the gripper are implemented to execute the optimal trajectories from the proposed framework. The intensive experimental results effectively demonstrate the performance of our trajectory planning framework in both simulation and real-world scenarios.
Abstract:Vision language models have played a key role in extracting meaningful features for various robotic applications. Among these, Contrastive Language-Image Pretraining (CLIP) is widely used in robotic tasks that require both vision and natural language understanding. However, CLIP was trained solely on static images paired with text prompts and has not yet been fully adapted for robotic tasks involving dynamic actions. In this paper, we introduce Robotic-CLIP to enhance robotic perception capabilities. We first gather and label large-scale action data, and then build our Robotic-CLIP by fine-tuning CLIP on 309,433 videos (~7.4 million frames) of action data using contrastive learning. By leveraging action data, Robotic-CLIP inherits CLIP's strong image performance while gaining the ability to understand actions in robotic contexts. Intensive experiments show that our Robotic-CLIP outperforms other CLIP-based models across various language-driven robotic tasks. Additionally, we demonstrate the practical effectiveness of Robotic-CLIP in real-world grasping applications.
Abstract:Grasp detection is a fundamental robotic task critical to the success of many industrial applications. However, current language-driven models for this task often struggle with cluttered images, lengthy textual descriptions, or slow inference speed. We introduce GraspMamba, a new language-driven grasp detection method that employs hierarchical feature fusion with Mamba vision to tackle these challenges. By leveraging rich visual features of the Mamba-based backbone alongside textual information, our approach effectively enhances the fusion of multimodal features. GraspMamba represents the first Mamba-based grasp detection model to extract vision and language features at multiple scales, delivering robust performance and rapid inference time. Intensive experiments show that GraspMamba outperforms recent methods by a clear margin. We validate our approach through real-world robotic experiments, highlighting its fast inference speed.
Abstract:Grasp detection is an essential task in robotics with various industrial applications. However, traditional methods often struggle with occlusions and do not utilize language for grasping. Incorporating natural language into grasp detection remains a challenging task and largely unexplored. To address this gap, we propose a new method for language-driven grasp detection with mask-guided attention by utilizing the transformer attention mechanism with semantic segmentation features. Our approach integrates visual data, segmentation mask features, and natural language instructions, significantly improving grasp detection accuracy. Our work introduces a new framework for language-driven grasp detection, paving the way for language-driven robotic applications. Intensive experiments show that our method outperforms other recent baselines by a clear margin, with a 10.0% success score improvement. We further validate our method in real-world robotic experiments, confirming the effectiveness of our approach.
Abstract:Language-driven grasp detection is a fundamental yet challenging task in robotics with various industrial applications. In this work, we present a new approach for language-driven grasp detection that leverages the concept of lightweight diffusion models to achieve fast inference time. By integrating diffusion processes with grasping prompts in natural language, our method can effectively encode visual and textual information, enabling more accurate and versatile grasp positioning that aligns well with the text query. To overcome the long inference time problem in diffusion models, we leverage the image and text features as the condition in the consistency model to reduce the number of denoising timesteps during inference. The intensive experimental results show that our method outperforms other recent grasp detection methods and lightweight diffusion models by a clear margin. We further validate our method in real-world robotic experiments to demonstrate its fast inference time capability.
Abstract:6-DoF grasp detection has been a fundamental and challenging problem in robotic vision. While previous works have focused on ensuring grasp stability, they often do not consider human intention conveyed through natural language, hindering effective collaboration between robots and users in complex 3D environments. In this paper, we present a new approach for language-driven 6-DoF grasp detection in cluttered point clouds. We first introduce Grasp-Anything-6D, a large-scale dataset for the language-driven 6-DoF grasp detection task with 1M point cloud scenes and more than 200M language-associated 3D grasp poses. We further introduce a novel diffusion model that incorporates a new negative prompt guidance learning strategy. The proposed negative prompt strategy directs the detection process toward the desired object while steering away from unwanted ones given the language input. Our method enables an end-to-end framework where humans can command the robot to grasp desired objects in a cluttered scene using natural language. Intensive experimental results show the effectiveness of our method in both benchmarking experiments and real-world scenarios, surpassing other baselines. In addition, we demonstrate the practicality of our approach in real-world robotic applications. Our project is available at https://airvlab.github.io/grasp-anything.
Abstract:Combining a vision module inside a closed-loop control system for a \emph{seamless movement} of a robot in a manipulation task is challenging due to the inconsistent update rates between utilized modules. This task is even more difficult in a dynamic environment, e.g., objects are moving. This paper presents a \emph{modular} zero-shot framework for language-driven manipulation of (dynamic) objects through a closed-loop control system with real-time trajectory replanning and an online 6D object pose localization. We segment an object within $\SI{0.5}{\second}$ by leveraging a vision language model via language commands. Then, guided by natural language commands, a closed-loop system, including a unified pose estimation and tracking and online trajectory planning, is utilized to continuously track this object and compute the optimal trajectory in real-time. Our proposed zero-shot framework provides a smooth trajectory that avoids jerky movements and ensures the robot can grasp a non-stationary object. Experiment results exhibit the real-time capability of the proposed zero-shot modular framework for the trajectory optimization module to accurately and efficiently grasp moving objects, i.e., up to \SI{30}{\hertz} update rates for the online 6D pose localization module and \SI{10}{\hertz} update rates for the receding-horizon trajectory optimization. These advantages highlight the modular framework's potential applications in robotics and human-robot interaction; see the video in https://www.acin.tuwien.ac.at/en/6e64/.
Abstract:Grasp detection is a persistent and intricate challenge with various industrial applications. Recently, many methods and datasets have been proposed to tackle the grasp detection problem. However, most of them do not consider using natural language as a condition to detect the grasp poses. In this paper, we introduce Grasp-Anything++, a new language-driven grasp detection dataset featuring 1M samples, over 3M objects, and upwards of 10M grasping instructions. We utilize foundation models to create a large-scale scene corpus with corresponding images and grasp prompts. We approach the language-driven grasp detection task as a conditional generation problem. Drawing on the success of diffusion models in generative tasks and given that language plays a vital role in this task, we propose a new language-driven grasp detection method based on diffusion models. Our key contribution is the contrastive training objective, which explicitly contributes to the denoising process to detect the grasp pose given the language instructions. We illustrate that our approach is theoretically supportive. The intensive experiments show that our method outperforms state-of-the-art approaches and allows real-world robotic grasping. Finally, we demonstrate our large-scale dataset enables zero-short grasp detection and is a challenging benchmark for future work. Project website: https://airvlab.github.io/grasp-anything/
Abstract:Driving vehicles in complex scenarios under harsh conditions is the biggest challenge for autonomous vehicles (AVs). To address this issue, we propose hierarchical motion planning and robust control strategy using the front-active steering system in complex scenarios with various slippery road adhesion coefficients while considering vehicle uncertain parameters. Behaviors of human vehicles (HVs) are considered and modeled in the form of a car-following model via the Intelligent Driver Model (IDM). Then, in the upper layer, the motion planner first generates an optimal trajectory by using the artificial potential field (APF) algorithm to formulate any surrounding objects, e.g., road marks, boundaries, and static/dynamic obstacles. To track the generated optimal trajectory, in the lower layer, an offline-constrained output feedback robust model predictive control (RMPC) is employed for the linear parameter varying (LPV) system by applying linear matrix inequality (LMI) optimization method that ensures the robustness against the model parameter uncertainties. Furthermore, by augmenting the system model, our proposed approach, called offline RMPC, achieves outstanding efficiency compared to three existing RMPC approaches, e.g., offset-offline RMPC, online RMPC, and offline RMPC without an augmented model (offline RMPC w/o AM), in both improving computing time and reducing input vibrations.