Abstract:Simultaneous localization and mapping (SLAM) in highly dynamic environments is challenging due to the correlation complexity between moving objects and the camera pose. Many methods have been proposed to deal with this problem; however, the moving properties of dynamic objects with a moving camera remain unclear. Therefore, to improve SLAM's performance, minimizing disruptive events of moving objects with a physical understanding of 3D shapes and dynamics of objects is needed. In this paper, we propose a robust method, V3D-SLAM, to remove moving objects via two lightweight re-evaluation stages, including identifying potentially moving and static objects using a spatial-reasoned Hough voting mechanism and refining static objects by detecting dynamic noise caused by intra-object motions using Chamfer distances as similarity measurements. Our experiment on the TUM RGB-D benchmark on dynamic sequences with ground-truth camera trajectories showed that our methods outperform the most recent state-of-the-art SLAM methods. Our source code is available at https://github.com/tuantdang/v3d-slam.
Abstract:Satellite remote sensing missions have gained popularity over the past fifteen years due to their ability to cover large swaths of land at regular intervals, making them ideal for monitoring environmental trends. The FINCH mission, a 3U+ CubeSat equipped with a hyperspectral camera, aims to monitor crop residue cover in agricultural fields. Although hyperspectral imaging captures both spectral and spatial information, it is prone to various types of noise, including random noise, stripe noise, and dead pixels. Effective denoising of these images is crucial for downstream scientific tasks. Traditional methods, including hand-crafted techniques encoding strong priors, learned 2D image denoising methods applied across different hyperspectral bands, or diffusion generative models applied independently on bands, often struggle with varying noise strengths across spectral bands, leading to significant spectral distortion. This paper presents a novel approach to hyperspectral image denoising using latent diffusion models that integrate spatial and spectral information. We particularly do so by building a 3D diffusion model and presenting a 3-stage training approach on real and synthetically crafted datasets. The proposed method preserves image structure while reducing noise. Evaluations on both popular hyperspectral denoising datasets and synthetically crafted datasets for the FINCH mission demonstrate the effectiveness of this approach.
Abstract:As the reliability of the robot's perception correlates with the number of integrated sensing modalities to tackle uncertainty, a practical solution to manage these sensors from different computers, operate them simultaneously, and maintain their real-time performance on the existing robotic system with minimal effort is needed. In this work, we present an end-to-end software-hardware framework, namely ExtPerFC, that supports both conventional hardware and software components and integrates machine learning object detectors without requiring an additional dedicated graphic processor unit (GPU). We first design our framework to achieve real-time performance on the existing robotic system, guarantee configuration optimization, and concentrate on code reusability. We then mathematically model and utilize our transfer learning strategies for 2D object detection and fuse them into depth images for 3D depth estimation. Lastly, we systematically test the proposed framework on the Baxter robot with two 7-DOF arms, a four-wheel mobility base, and an Intel RealSense D435i RGB-D camera. The results show that the robot achieves real-time performance while executing other tasks (e.g., map building, localization, navigation, object detection, arm moving, and grasping) simultaneously with available hardware like Intel onboard CPUS/GPUs on distributed computers. Also, to comprehensively control, program, and monitor the robot system, we design and introduce an end-user application. The source code is available at https://github.com/tuantdang/perception_framework.
Abstract:Image Captioning is one of the vision-language tasks that still interest the research community worldwide in the 2020s. MS-COCO Caption benchmark is commonly used to evaluate the performance of advanced captioning models, although it was published in 2015. Recent captioning models trained on the MS-COCO Caption dataset only have good performance in language patterns of English; they do not have such good performance in contexts captured in Vietnam or fluently caption images using Vietnamese. To contribute to the low-resources research community as in Vietnam, we introduce a novel image captioning dataset in Vietnamese, the Open-domain Vietnamese Image Captioning dataset (UIT-OpenViIC). The introduced dataset includes complex scenes captured in Vietnam and manually annotated by Vietnamese under strict rules and supervision. In this paper, we present in more detail the dataset creation process. From preliminary analysis, we show that our dataset is challenging to recent state-of-the-art (SOTA) Transformer-based baselines, which performed well on the MS COCO dataset. Then, the modest results prove that UIT-OpenViIC has room to grow, which can be one of the standard benchmarks in Vietnamese for the research community to evaluate their captioning models. Furthermore, we present a CAMO approach that effectively enhances the image representation ability by a multi-level encoder output fusion mechanism, which helps improve the quality of generated captions compared to previous captioning models.
Abstract:Graph Neural Networks (GNNs) had been demonstrated to be inherently susceptible to the problems of over-smoothing and over-squashing. These issues prohibit the ability of GNNs to model complex graph interactions by limiting their effectiveness at taking into account distant information. Our study reveals the key connection between the local graph geometry and the occurrence of both of these issues, thereby providing a unified framework for studying them at a local scale using the Ollivier's Ricci curvature. Based on our theory, a number of principled methods are proposed to alleviate the over-smoothing and over-squashing issues.
Abstract:We propose a novel high-fidelity face swapping method called "Arithmetic Face Swapping" (AFS) that explicitly disentangles the intermediate latent space W+ of a pretrained StyleGAN into the "identity" and "style" subspaces so that a latent code in W+ is the sum of an "identity" code and a "style" code in the corresponding subspaces. Via our disentanglement, face swapping (FS) can be regarded as a simple arithmetic operation in W+, i.e., the summation of a source "identity" code and a target "style" code. This makes AFS more intuitive and elegant than other FS methods. In addition, our method can generalize over the standard face swapping to support other interesting operations, e.g., combining the identity of one source with styles of multiple targets and vice versa. We implement our identity-style disentanglement by learning a neural network that maps a latent code to a "style" code. We provide a condition for this network which theoretically guarantees identity preservation of the source face even after a sequence of face swapping operations. Extensive experiments demonstrate the advantage of our method over state-of-the-art FS methods in producing high-quality swapped faces.
Abstract:Vietnam is such an attractive tourist destination with its stunning and pristine landscapes and its top-rated unique food and drink. Among thousands of Vietnamese dishes, foreigners and native people are interested in easy-to-eat tastes and easy-to-do recipes, along with reasonable prices, mouthwatering flavors, and popularity. Due to the diversity and almost all the dishes have significant similarities and the lack of quality Vietnamese food datasets, it is hard to implement an auto system to classify Vietnamese food, therefore, make people easier to discover Vietnamese food. This paper introduces a new Vietnamese food dataset named VinaFood21, which consists of 13,950 images corresponding to 21 dishes. We use 10,044 images for model training and 6,682 test images to classify each food in the VinaFood21 dataset and achieved an average accuracy of 74.81% when fine-tuning CNN EfficientNet-B0. (https://github.com/nguyenvd-uit/uit-together-dataset)