Abstract:Recent advances in text-guided image editing enable users to perform image edits through simple text inputs, leveraging the extensive priors of multi-step diffusion-based text-to-image models. However, these methods often fall short of the speed demands required for real-world and on-device applications due to the costly multi-step inversion and sampling process involved. In response to this, we introduce SwiftEdit, a simple yet highly efficient editing tool that achieve instant text-guided image editing (in 0.23s). The advancement of SwiftEdit lies in its two novel contributions: a one-step inversion framework that enables one-step image reconstruction via inversion and a mask-guided editing technique with our proposed attention rescaling mechanism to perform localized image editing. Extensive experiments are provided to demonstrate the effectiveness and efficiency of SwiftEdit. In particular, SwiftEdit enables instant text-guided image editing, which is extremely faster than previous multi-step methods (at least 50 times faster) while maintain a competitive performance in editing results. Our project page is at: https://swift-edit.github.io/
Abstract:Image editing technologies are tools used to transform, adjust, remove, or otherwise alter images. Recent research has significantly improved the capabilities of image editing tools, enabling the creation of photorealistic and semantically informed forged regions that are nearly indistinguishable from authentic imagery, presenting new challenges in digital forensics and media credibility. While current image forensic techniques are adept at localizing forged regions produced by traditional image manipulation methods, current capabilities struggle to localize regions created by diffusion-based techniques. To bridge this gap, we present a novel framework that integrates a multimodal Large Language Model (LLM) for enhanced reasoning capabilities to localize tampered regions in images produced by diffusion model-based editing methods. By leveraging the contextual and semantic strengths of LLMs, our framework achieves promising results on MagicBrush, AutoSplice, and PerfBrush (novel diffusion-based dataset) datasets, outperforming previous approaches in mIoU and F1-score metrics. Notably, our method excels on the PerfBrush dataset, a self-constructed test set featuring previously unseen types of edits. Here, where traditional methods typically falter, achieving markedly low scores, our approach demonstrates promising performance.
Abstract:In the ever-expanding digital landscape, safeguarding sensitive information remains paramount. This paper delves deep into digital protection, specifically focusing on steganography. While prior research predominantly fixated on individual bit decoding, we address this limitation by introducing ``message accuracy'', a novel metric evaluating the entirety of decoded messages for a more holistic evaluation. In addition, we propose an adaptive universal loss tailored to enhance message accuracy, named Log-Sum-Exponential (LSE) loss, thereby significantly improving the message accuracy of recent approaches. Furthermore, we also introduce a new latent-aware encoding technique in our framework named \Approach, harnessing pretrained Stable Diffusion for advanced steganographic image generation, giving rise to a better trade-off between image quality and message recovery. Throughout experimental results, we have demonstrated the superior performance of the new LSE loss and latent-aware encoding technique. This comprehensive approach marks a significant step in evolving evaluation metrics, refining loss functions, and innovating image concealment techniques, aiming for more robust and dependable information protection.
Abstract:Preparing training data for deep vision models is a labor-intensive task. To address this, generative models have emerged as an effective solution for generating synthetic data. While current generative models produce image-level category labels, we propose a novel method for generating pixel-level semantic segmentation labels using the text-to-image generative model Stable Diffusion (SD). By utilizing the text prompts, cross-attention, and self-attention of SD, we introduce three new techniques: class-prompt appending, class-prompt cross-attention, and self-attention exponentiation. These techniques enable us to generate segmentation maps corresponding to synthetic images. These maps serve as pseudo-labels for training semantic segmenters, eliminating the need for labor-intensive pixel-wise annotation. To account for the imperfections in our pseudo-labels, we incorporate uncertainty regions into the segmentation, allowing us to disregard loss from those regions. We conduct evaluations on two datasets, PASCAL VOC and MSCOCO, and our approach significantly outperforms concurrent work. Our benchmarks and code will be released at https://github.com/VinAIResearch/Dataset-Diffusion
Abstract:The vulnerabilities to backdoor attacks have recently threatened the trustworthiness of machine learning models in practical applications. Conventional wisdom suggests that not everyone can be an attacker since the process of designing the trigger generation algorithm often involves significant effort and extensive experimentation to ensure the attack's stealthiness and effectiveness. Alternatively, this paper shows that there exists a more severe backdoor threat: anyone can exploit an easily-accessible algorithm for silent backdoor attacks. Specifically, this attacker can employ the widely-used lossy image compression from a plethora of compression tools to effortlessly inject a trigger pattern into an image without leaving any noticeable trace; i.e., the generated triggers are natural artifacts. One does not require extensive knowledge to click on the "convert" or "save as" button while using tools for lossy image compression. Via this attack, the adversary does not need to design a trigger generator as seen in prior works and only requires poisoning the data. Empirically, the proposed attack consistently achieves 100% attack success rate in several benchmark datasets such as MNIST, CIFAR-10, GTSRB and CelebA. More significantly, the proposed attack can still achieve almost 100% attack success rate with very small (approximately 10%) poisoning rates in the clean label setting. The generated trigger of the proposed attack using one lossy compression algorithm is also transferable across other related compression algorithms, exacerbating the severity of this backdoor threat. This work takes another crucial step toward understanding the extensive risks of backdoor attacks in practice, urging practitioners to investigate similar attacks and relevant backdoor mitigation methods.
Abstract:Early detection and localization of myocardial infarction (MI) can reduce the severity of cardiac damage through timely treatment interventions. In recent years, deep learning techniques have shown promise for detecting MI in echocardiographic images. However, there has been no examination of how segmentation accuracy affects MI classification performance and the potential benefits of using ensemble learning approaches. Our study investigates this relationship and introduces a robust method that combines features from multiple segmentation models to improve MI classification performance by leveraging ensemble learning. Our method combines myocardial segment displacement features from multiple segmentation models, which are then input into a typical classifier to estimate the risk of MI. We validated the proposed approach on two datasets: the public HMC-QU dataset (109 echocardiograms) for training and validation, and an E-Hospital dataset (60 echocardiograms) from a local clinical site in Vietnam for independent testing. Model performance was evaluated based on accuracy, sensitivity, and specificity. The proposed approach demonstrated excellent performance in detecting MI. The results showed that the proposed approach outperformed the state-of-the-art feature-based method. Further research is necessary to determine its potential use in clinical settings as a tool to assist cardiologists and technicians with objective assessments and reduce dependence on operator subjectivity. Our research codes are available on GitHub at https://github.com/vinuni-vishc/mi-detection-echo.
Abstract:We consider two robust versions of optimal transport, named $\textit{Robust Semi-constrained Optimal Transport}$ (RSOT) and $\textit{Robust Unconstrained Optimal Transport}$ (ROT), formulated by relaxing the marginal constraints with Kullback-Leibler divergence. For both problems in the discrete settings, we propose Sinkhorn-based algorithms that produce $\varepsilon$-approximations of RSOT and ROT in $\widetilde{\mathcal{O}}(\frac{n^2}{\varepsilon})$ time, where $n$ is the number of supports of the probability distributions. Furthermore, to reduce the dependency of the complexity of the Sinkhorn-based algorithms on $n$, we apply Nystr\"{o}m method to approximate the kernel matrix in both RSOT and ROT by a matrix of rank $r$ before passing it to these Sinkhorn-based algorithms. We demonstrate that these new algorithms have $\widetilde{\mathcal{O}}(n r^2 + \frac{nr}{\varepsilon})$ runtime to obtain the RSOT and ROT $\varepsilon$-approximations. Finally, we consider a barycenter problem based on RSOT, named $\textit{Robust Semi-Constrained Barycenter}$ problem (RSBP), and develop a robust iterative Bregman projection algorithm, called $\textbf{Normalized-RobustIBP}$ algorithm, to solve the RSBP in the discrete settings of probability distributions. We show that an $\varepsilon$-approximated solution of the RSBP can be achieved in $\widetilde{\mathcal{O}}(\frac{mn^2}{\varepsilon})$ time using $\textbf{Normalized-RobustIBP}$ algorithm when $m = 2$, which is better than the previous complexity $\widetilde{\mathcal{O}}(\frac{mn^2}{\varepsilon^2})$ of IBP algorithm for approximating the Wasserstein barycenter. Extensive experiments confirm our theoretical results.