Abstract:In domain-specific contexts, particularly mental health, abstractive summarization requires advanced techniques adept at handling specialized content to generate domain-relevant and faithful summaries. In response to this, we introduce a guided summarizer equipped with a dual-encoder and an adapted decoder that utilizes novel domain-specific guidance signals, i.e., mental health terminologies and contextually rich sentences from the source document, to enhance its capacity to align closely with the content and context of guidance, thereby generating a domain-relevant summary. Additionally, we present a post-editing correction model to rectify errors in the generated summary, thus enhancing its consistency with the original content in detail. Evaluation on the MentSum dataset reveals that our model outperforms existing baseline models in terms of both ROUGE and FactCC scores. Although the experiments are specifically designed for mental health posts, the methodology we've developed offers broad applicability, highlighting its versatility and effectiveness in producing high-quality domain-specific summaries.
Abstract:Endovascular surgical tool reconstruction represents an important factor in advancing endovascular tool navigation, which is an important step in endovascular surgery. However, the lack of publicly available datasets significantly restricts the development and validation of novel machine learning approaches. Moreover, due to the need for specialized equipment such as biplanar scanners, most of the previous research employs monoplanar fluoroscopic technologies, hence only capturing the data from a single view and significantly limiting the reconstruction accuracy. To bridge this gap, we introduce Guide3D, a bi-planar X-ray dataset for 3D reconstruction. The dataset represents a collection of high resolution bi-planar, manually annotated fluoroscopic videos, captured in real-world settings. Validating our dataset within a simulated environment reflective of clinical settings confirms its applicability for real-world applications. Furthermore, we propose a new benchmark for guidewrite shape prediction, serving as a strong baseline for future work. Guide3D not only addresses an essential need by offering a platform for advancing segmentation and 3D reconstruction techniques but also aids the development of more accurate and efficient endovascular surgery interventions. Our project is available at https://airvlab.github.io/guide3d/.
Abstract:Real-world datasets follow an imbalanced distribution, which poses significant challenges in rare-category object detection. Recent studies tackle this problem by developing re-weighting and re-sampling methods, that utilise the class frequencies of the dataset. However, these techniques focus solely on the frequency statistics and ignore the distribution of the classes in image space, missing important information. In contrast to them, we propose FRActal CALibration (FRACAL): a novel post-calibration method for long-tailed object detection. FRACAL devises a logit adjustment method that utilises the fractal dimension to estimate how uniformly classes are distributed in image space. During inference, it uses the fractal dimension to inversely downweight the probabilities of uniformly spaced class predictions achieving balance in two axes: between frequent and rare categories, and between uniformly spaced and sparsely spaced classes. FRACAL is a post-processing method and it does not require any training, also it can be combined with many off-the-shelf models such as one-stage sigmoid detectors and two-stage instance segmentation models. FRACAL boosts the rare class performance by up to 8.6% and surpasses all previous methods on LVIS dataset, while showing good generalisation to other datasets such as COCO, V3Det and OpenImages. The code will be released.
Abstract:Classifying nodes in a graph is a common problem. The ideal classifier must adapt to any imbalances in the class distribution. It must also use information in the clustering structure of real-world graphs. Existing Graph Neural Networks (GNNs) have not addressed both problems together. We propose the Enhanced Cluster-aware Graph Network (ECGN), a novel method that addresses these issues by integrating cluster-specific training with synthetic node generation. Unlike traditional GNNs that apply the same node update process for all nodes, ECGN learns different aggregations for different clusters. We also use the clusters to generate new minority-class nodes in a way that helps clarify the inter-class decision boundary. By combining cluster-aware embeddings with a global integration step, ECGN enhances the quality of the resulting node embeddings. Our method works with any underlying GNN and any cluster generation technique. Experimental results show that ECGN consistently outperforms its closest competitors by up to 11% on some widely studied benchmark datasets.
Abstract:Grasping a variety of objects remains a key challenge in the development of versatile robotic systems. The human hand is remarkably dexterous, capable of grasping and manipulating objects with diverse shapes, mechanical properties, and textures. Inspired by how humans use two fingers to pick up thin and large objects such as fabric or sheets of paper, we aim to develop a gripper optimized for grasping such deformable objects. Observing how the soft and flexible fingertip joints of the hand approach and grasp thin materials, a hybrid gripper design that incorporates both soft and rigid components was proposed. The gripper utilizes a soft pneumatic ring wrapped around a rigid revolute joint to create a flexible two-fingered gripper. Experiments were conducted to characterize and evaluate the gripper performance in handling sheets of paper and other objects. Compared to rigid grippers, the proposed design improves grasping efficiency and reduces the gripping distance by up to eightfold.
Abstract:Vision models excel in image classification but struggle to generalize to unseen data, such as classifying images from unseen domains or discovering novel categories. In this paper, we explore the relationship between logical reasoning and deep learning generalization in visual classification. A logical regularization termed L-Reg is derived which bridges a logical analysis framework to image classification. Our work reveals that L-Reg reduces the complexity of the model in terms of the feature distribution and classifier weights. Specifically, we unveil the interpretability brought by L-Reg, as it enables the model to extract the salient features, such as faces to persons, for classification. Theoretical analysis and experiments demonstrate that L-Reg enhances generalization across various scenarios, including multi-domain generalization and generalized category discovery. In complex real-world scenarios where images span unknown classes and unseen domains, L-Reg consistently improves generalization, highlighting its practical efficacy.
Abstract:Vision language models have played a key role in extracting meaningful features for various robotic applications. Among these, Contrastive Language-Image Pretraining (CLIP) is widely used in robotic tasks that require both vision and natural language understanding. However, CLIP was trained solely on static images paired with text prompts and has not yet been fully adapted for robotic tasks involving dynamic actions. In this paper, we introduce Robotic-CLIP to enhance robotic perception capabilities. We first gather and label large-scale action data, and then build our Robotic-CLIP by fine-tuning CLIP on 309,433 videos (~7.4 million frames) of action data using contrastive learning. By leveraging action data, Robotic-CLIP inherits CLIP's strong image performance while gaining the ability to understand actions in robotic contexts. Intensive experiments show that our Robotic-CLIP outperforms other CLIP-based models across various language-driven robotic tasks. Additionally, we demonstrate the practical effectiveness of Robotic-CLIP in real-world grasping applications.
Abstract:Grasp detection is a fundamental robotic task critical to the success of many industrial applications. However, current language-driven models for this task often struggle with cluttered images, lengthy textual descriptions, or slow inference speed. We introduce GraspMamba, a new language-driven grasp detection method that employs hierarchical feature fusion with Mamba vision to tackle these challenges. By leveraging rich visual features of the Mamba-based backbone alongside textual information, our approach effectively enhances the fusion of multimodal features. GraspMamba represents the first Mamba-based grasp detection model to extract vision and language features at multiple scales, delivering robust performance and rapid inference time. Intensive experiments show that GraspMamba outperforms recent methods by a clear margin. We validate our approach through real-world robotic experiments, highlighting its fast inference speed.
Abstract:Real-time visual feedback from catheterization analysis is crucial for enhancing surgical safety and efficiency during endovascular interventions. However, existing datasets are often limited to specific tasks, small scale, and lack the comprehensive annotations necessary for broader endovascular intervention understanding. To tackle these limitations, we introduce CathAction, a large-scale dataset for catheterization understanding. Our CathAction dataset encompasses approximately 500,000 annotated frames for catheterization action understanding and collision detection, and 25,000 ground truth masks for catheter and guidewire segmentation. For each task, we benchmark recent related works in the field. We further discuss the challenges of endovascular intentions compared to traditional computer vision tasks and point out open research questions. We hope that CathAction will facilitate the development of endovascular intervention understanding methods that can be applied to real-world applications. The dataset is available at https://airvlab.github.io/cathdata/.
Abstract:Grasp detection is an essential task in robotics with various industrial applications. However, traditional methods often struggle with occlusions and do not utilize language for grasping. Incorporating natural language into grasp detection remains a challenging task and largely unexplored. To address this gap, we propose a new method for language-driven grasp detection with mask-guided attention by utilizing the transformer attention mechanism with semantic segmentation features. Our approach integrates visual data, segmentation mask features, and natural language instructions, significantly improving grasp detection accuracy. Our work introduces a new framework for language-driven grasp detection, paving the way for language-driven robotic applications. Intensive experiments show that our method outperforms other recent baselines by a clear margin, with a 10.0% success score improvement. We further validate our method in real-world robotic experiments, confirming the effectiveness of our approach.