Abstract:Robot design is a complex and time-consuming process that requires specialized expertise. Gaining a deeper understanding of robot design data can enable various applications, including automated design generation, retrieving example designs from text, and developing AI-powered design assistants. While recent advancements in foundation models present promising approaches to addressing these challenges, progress in this field is hindered by the lack of large-scale design datasets. In this paper, we introduce RoboDesign1M, a large-scale dataset comprising 1 million samples. Our dataset features multimodal data collected from scientific literature, covering various robotics domains. We propose a semi-automated data collection pipeline, enabling efficient and diverse data acquisition. To assess the effectiveness of RoboDesign1M, we conduct extensive experiments across multiple tasks, including design image generation, visual question answering about designs, and design image retrieval. The results demonstrate that our dataset serves as a challenging new benchmark for design understanding tasks and has the potential to advance research in this field. RoboDesign1M will be released to support further developments in AI-driven robotic design automation.
Abstract:We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
Abstract:Typically, Few-shot Continual Relation Extraction (FCRE) models must balance retaining prior knowledge while adapting to new tasks with extremely limited data. However, real-world scenarios may also involve unseen or undetermined relations that existing methods still struggle to handle. To address these challenges, we propose a novel approach that leverages the Open Information Extraction concept of Knowledge Graph Construction (KGC). Our method not only exposes models to all possible pairs of relations, including determined and undetermined labels not available in the training set, but also enriches model knowledge with diverse relation descriptions, thereby enhancing knowledge retention and adaptability in this challenging scenario. In the perspective of KGC, this is the first work explored in the setting of Continual Learning, allowing efficient expansion of the graph as the data evolves. Experimental results demonstrate our superior performance compared to other state-of-the-art FCRE baselines, as well as the efficiency in handling dynamic graph construction in this setting.
Abstract:The widespread adoption of conversational LLMs for software development has raised new security concerns regarding the safety of LLM-generated content. Our motivational study outlines ChatGPT's potential in volunteering context-specific information to the developers, promoting safe coding practices. Motivated by this finding, we conduct a study to evaluate the degree of security awareness exhibited by three prominent LLMs: Claude 3, GPT-4, and Llama 3. We prompt these LLMs with Stack Overflow questions that contain vulnerable code to evaluate whether they merely provide answers to the questions or if they also warn users about the insecure code, thereby demonstrating a degree of security awareness. Further, we assess whether LLM responses provide information about the causes, exploits, and the potential fixes of the vulnerability, to help raise users' awareness. Our findings show that all three models struggle to accurately detect and warn users about vulnerabilities, achieving a detection rate of only 12.6% to 40% across our datasets. We also observe that the LLMs tend to identify certain types of vulnerabilities related to sensitive information exposure and improper input neutralization much more frequently than other types, such as those involving external control of file names or paths. Furthermore, when LLMs do issue security warnings, they often provide more information on the causes, exploits, and fixes of vulnerabilities compared to Stack Overflow responses. Finally, we provide an in-depth discussion on the implications of our findings and present a CLI-based prompting tool that can be used to generate significantly more secure LLM responses.
Abstract:Forestry machines operated in forest production environments face challenges when performing manipulation tasks, especially regarding the complicated dynamics of underactuated crane systems and the heavy weight of logs to be grasped. This study investigates the feasibility of using reinforcement learning for forestry crane manipulators in grasping and lifting heavy wood logs autonomously. We first build a simulator using Mujoco physics engine to create realistic scenarios, including modeling a forestry crane with 8 degrees of freedom from CAD data and wood logs of different sizes. We further implement a velocity controller for autonomous log grasping with deep reinforcement learning using a curriculum strategy. Utilizing our new simulator, the proposed control strategy exhibits a success rate of 96% when grasping logs of different diameters and under random initial configurations of the forestry crane. In addition, reward functions and reinforcement learning baselines are implemented to provide an open-source benchmark for the community in large-scale manipulation tasks. A video with several demonstrations can be seen at https://www.acin.tuwien.ac.at/en/d18a/
Abstract:Visual Prompt Tuning (VPT) has recently emerged as a powerful method for adapting pre-trained vision models to downstream tasks. By introducing learnable prompt tokens as task-specific instructions, VPT effectively guides pre-trained transformer models with minimal overhead. Despite its empirical success, a comprehensive theoretical understanding of VPT remains an active area of research. Building on recent insights into the connection between mixture of experts and prompt-based approaches, we identify a key limitation in VPT: the restricted functional expressiveness in prompt formulation. To address this limitation, we propose Visual Adaptive Prompt Tuning (VAPT), a new generation of prompts that redefines prompts as adaptive functions of the input. Our theoretical analysis shows that this simple yet intuitive approach achieves optimal sample efficiency. Empirical results on VTAB-1K and FGVC further demonstrate VAPT's effectiveness, with performance gains of 7.34% and 1.04% over fully fine-tuning baselines, respectively. Notably, VAPT also surpasses VPT by a substantial margin while using fewer parameters. These results highlight both the effectiveness and efficiency of our method and pave the way for future research to explore the potential of adaptive prompts.
Abstract:This paper presents a new trajectory replanner for grasping irregular objects. Unlike conventional grasping tasks where the object's geometry is assumed simple, we aim to achieve a "dynamic grasp" of the irregular objects, which requires continuous adjustment during the grasping process. To effectively handle irregular objects, we propose a trajectory optimization framework that comprises two phases. Firstly, in a specified time limit of 10s, initial offline trajectories are computed for a seamless motion from an initial configuration of the robot to grasp the object and deliver it to a pre-defined target location. Secondly, fast online trajectory optimization is implemented to update robot trajectories in real-time within 100 ms. This helps to mitigate pose estimation errors from the vision system. To account for model inaccuracies, disturbances, and other non-modeled effects, trajectory tracking controllers for both the robot and the gripper are implemented to execute the optimal trajectories from the proposed framework. The intensive experimental results effectively demonstrate the performance of our trajectory planning framework in both simulation and real-world scenarios.
Abstract:In endovascular surgery, the precise identification of catheters and guidewires in X-ray images is essential for reducing intervention risks. However, accurately segmenting catheter and guidewire structures is challenging due to the limited availability of labeled data. Foundation models offer a promising solution by enabling the collection of similar domain data to train models whose weights can be fine-tuned for downstream tasks. Nonetheless, large-scale data collection for training is constrained by the necessity of maintaining patient privacy. This paper proposes a new method to train a foundation model in a decentralized federated learning setting for endovascular intervention. To ensure the feasibility of the training, we tackle the unseen data issue using differentiable Earth Mover's Distance within a knowledge distillation framework. Once trained, our foundation model's weights provide valuable initialization for downstream tasks, thereby enhancing task-specific performance. Intensive experiments show that our approach achieves new state-of-the-art results, contributing to advancements in endovascular intervention and robotic-assisted endovascular surgery, while addressing the critical issue of data sharing in the medical domain.
Abstract:Endovascular navigation is a crucial aspect of minimally invasive procedures, where precise control of curvilinear instruments like guidewires is critical for successful interventions. A key challenge in this task is accurately predicting the evolving shape of the guidewire as it navigates through the vasculature, which presents complex deformations due to interactions with the vessel walls. Traditional segmentation methods often fail to provide accurate real-time shape predictions, limiting their effectiveness in highly dynamic environments. To address this, we propose SplineFormer, a new transformer-based architecture, designed specifically to predict the continuous, smooth shape of the guidewire in an explainable way. By leveraging the transformer's ability, our network effectively captures the intricate bending and twisting of the guidewire, representing it as a spline for greater accuracy and smoothness. We integrate our SplineFormer into an end-to-end robot navigation system by leveraging the condensed information. The experimental results demonstrate that our SplineFormer is able to perform endovascular navigation autonomously and achieves a 50% success rate when cannulating the brachiocephalic artery on the real robot.
Abstract:We present phi-4, a 14-billion parameter language model developed with a training recipe that is centrally focused on data quality. Unlike most language models, where pre-training is based primarily on organic data sources such as web content or code, phi-4 strategically incorporates synthetic data throughout the training process. While previous models in the Phi family largely distill the capabilities of a teacher model (specifically GPT-4), phi-4 substantially surpasses its teacher model on STEM-focused QA capabilities, giving evidence that our data-generation and post-training techniques go beyond distillation. Despite minimal changes to the phi-3 architecture, phi-4 achieves strong performance relative to its size -- especially on reasoning-focused benchmarks -- due to improved data, training curriculum, and innovations in the post-training scheme.